New Images
This commit is contained in:
parent
4f99251e68
commit
5aea4f9f55
15
README.md
15
README.md
@ -6,7 +6,7 @@ Data Exchange: [Google Drive Folder](***REMOVED***)
|
||||
|
||||
### Fixpoint Tests:
|
||||
|
||||
- [ ] Dropout Test
|
||||
- [X] Dropout Test
|
||||
- (Macht das Partikel beim Goal mit oder ist es nur SRN)
|
||||
- Zero_ident diff = -00.04999637603759766 %
|
||||
|
||||
@ -29,6 +29,8 @@ Data Exchange: [Google Drive Folder](***REMOVED***)
|
||||
- gits das schon?
|
||||
- Hypernetwork?
|
||||
- arxiv: 1905.02898
|
||||
- Sparse Networks
|
||||
- Pruning
|
||||
|
||||
---
|
||||
|
||||
@ -42,6 +44,16 @@ Data Exchange: [Google Drive Folder](***REMOVED***)
|
||||
|  |  |
|
||||
| SRNN x*n 6 Neurons Other_Func | SRNN x*n 10 Neurons Other_Func |
|
||||
|  |  |
|
||||
|
||||
- [ ] Connectivity
|
||||
- Das Netz dünnt sich wirklich aus.
|
||||
|
||||
|||
|
||||
|---------------------------------------------------|----------------------------------------------------|
|
||||
| 200 Epochs - 4 Neurons - \alpha 100 RES | |
|
||||
|  |  |
|
||||
| OTHER FUNTIONS | IDENTITY FUNCTIONS |
|
||||
|  |  |
|
||||
|
||||
- [ ] Training mit kleineren GNs
|
||||
|
||||
@ -59,6 +71,7 @@ Data Exchange: [Google Drive Folder](***REMOVED***)
|
||||
- [ ] Test mit Baseline Dense Network
|
||||
- [ ] mit vergleichbaren Neuron Count
|
||||
- [ ] mit gesamt Weight Count
|
||||
|
||||
- [ ] Task/Goal statt SRNN-Task
|
||||
|
||||
---
|
||||
|
40
as_line_plot.py
Normal file
40
as_line_plot.py
Normal file
@ -0,0 +1,40 @@
|
||||
import numpy as np
|
||||
import torch
|
||||
import pandas as pd
|
||||
import re
|
||||
from pathlib import Path
|
||||
import seaborn as sns
|
||||
from matplotlib import pyplot as plt
|
||||
from network import FixTypes
|
||||
|
||||
|
||||
if __name__ == '__main__':
|
||||
p = Path(r'experiments\output\mn_st_200_4_alpha_100\trained_model_ckpt_e200.tp')
|
||||
m = torch.load(p, map_location=torch.device('cpu'))
|
||||
particles = [y for x in m._meta_layer_list for y in x.particles]
|
||||
df = pd.DataFrame(columns=['type', 'layer', 'neuron', 'name', 'color'])
|
||||
colors = []
|
||||
|
||||
for particle in particles:
|
||||
l, c, w = [float(x) for x in re.sub("[^0-9|_]", "", particle.name).split('_')]
|
||||
|
||||
color = sns.color_palette()[0 if particle.is_fixpoint == FixTypes.identity_func else 1]
|
||||
# color = 'orange' if particle.is_fixpoint == FixTypes.identity_func else 'blue'
|
||||
colors.append(color)
|
||||
df.loc[df.shape[0]] = (particle.is_fixpoint, l-1, w, particle.name, color)
|
||||
df.loc[df.shape[0]] = (particle.is_fixpoint, l, c, particle.name, color)
|
||||
for layer in list(df['layer'].unique()):
|
||||
divisor = df.loc[(df['layer'] == layer), 'neuron'].max()
|
||||
df.loc[(df['layer'] == layer), 'neuron'] /= divisor
|
||||
|
||||
print('gathered')
|
||||
for n, (fixtype, color) in enumerate(zip([FixTypes.other_func, FixTypes.identity_func], ['blue', 'orange'])):
|
||||
plt.clf()
|
||||
ax = sns.lineplot(y='neuron', x='layer', hue='name', data=df[df['type'] == fixtype],
|
||||
legend=False, estimator=None,
|
||||
palette=[sns.color_palette()[n]] * (df[df['type'] == fixtype].shape[0]//2), lw=1)
|
||||
# ax.set(yscale='log', ylabel='Neuron')
|
||||
ax.set_title(fixtype)
|
||||
plt.show()
|
||||
print('plottet')
|
||||
|
@ -17,6 +17,7 @@ from torchvision.datasets import MNIST
|
||||
from torchvision.transforms import ToTensor, Compose, Resize
|
||||
from tqdm import tqdm
|
||||
|
||||
|
||||
if platform.node() == 'CarbonX':
|
||||
debug = True
|
||||
print("@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@")
|
||||
@ -36,8 +37,8 @@ else:
|
||||
DIR = None
|
||||
pass
|
||||
|
||||
from network import MetaNet
|
||||
from functionalities_test import test_for_fixpoints, FixTypes
|
||||
from network import MetaNet, FixTypes
|
||||
from functionalities_test import test_for_fixpoints
|
||||
|
||||
WORKER = 10 if not debug else 2
|
||||
debug = False
|
||||
@ -195,13 +196,14 @@ def flat_for_store(parameters):
|
||||
if __name__ == '__main__':
|
||||
|
||||
self_train = True
|
||||
training = True
|
||||
training = False
|
||||
plotting = True
|
||||
particle_analysis = True
|
||||
as_sparse_network_test = True
|
||||
self_train_alpha = 1
|
||||
train_to_id_first = False
|
||||
self_train_alpha = 100
|
||||
batch_train_beta = 1
|
||||
weight_hidden_size = 5
|
||||
weight_hidden_size = 4
|
||||
residual_skip = True
|
||||
dropout = 0
|
||||
|
||||
@ -209,9 +211,11 @@ if __name__ == '__main__':
|
||||
data_path.mkdir(exist_ok=True, parents=True)
|
||||
|
||||
st_str = f'{"" if self_train else "no_"}st'
|
||||
a_str = f'_alpha_{self_train_alpha}' if self_train_alpha != 1 else ''
|
||||
res_str = f'{"" if residual_skip else "_no"}_res'
|
||||
dr_str = f'{f"_dr_{dropout}" if dropout != 0 else ""}'
|
||||
run_path = Path('output') / f'mn_{st_str}_{EPOCH}_{weight_hidden_size}{res_str}{dr_str}'
|
||||
id_str = f'{f"_StToId" if train_to_id_first else ""}'
|
||||
run_path = Path('output') / f'mn_{st_str}_{EPOCH}_{weight_hidden_size}{a_str}{res_str}{dr_str}{id_str}'
|
||||
|
||||
model_path = run_path / '0000_trained_model.zip'
|
||||
df_store_path = run_path / 'train_store.csv'
|
||||
@ -245,8 +249,9 @@ if __name__ == '__main__':
|
||||
metric = torchmetrics.Accuracy()
|
||||
else:
|
||||
metric = None
|
||||
init_st = train_to_id_first and all(x.is_fixpoint == FixTypes.identity_func for x in metanet.particles)
|
||||
for batch, (batch_x, batch_y) in tqdm(enumerate(d), total=len(d), desc='MetaNet Train - Batch'):
|
||||
if self_train and is_self_train_epoch:
|
||||
if (self_train and is_self_train_epoch) or init_st:
|
||||
# Zero your gradients for every batch!
|
||||
optimizer.zero_grad()
|
||||
self_train_loss = metanet.combined_self_train() * self_train_alpha
|
||||
@ -255,44 +260,46 @@ if __name__ == '__main__':
|
||||
optimizer.step()
|
||||
step_log = dict(Epoch=epoch, Batch=batch, Metric='Self Train Loss', Score=self_train_loss.item())
|
||||
train_store.loc[train_store.shape[0]] = step_log
|
||||
if train_to_id_first <= epoch:
|
||||
# Zero your gradients for every batch!
|
||||
optimizer.zero_grad()
|
||||
batch_x, batch_y = batch_x.to(DEVICE), batch_y.to(DEVICE)
|
||||
y = metanet(batch_x)
|
||||
# loss = loss_fn(y, batch_y.unsqueeze(-1).to(torch.float32))
|
||||
loss = loss_fn(y, batch_y.to(torch.long)) * batch_train_beta
|
||||
loss.backward()
|
||||
|
||||
# Zero your gradients for every batch!
|
||||
optimizer.zero_grad()
|
||||
batch_x, batch_y = batch_x.to(DEVICE), batch_y.to(DEVICE)
|
||||
y = metanet(batch_x)
|
||||
# loss = loss_fn(y, batch_y.unsqueeze(-1).to(torch.float32))
|
||||
loss = loss_fn(y, batch_y.to(torch.long)) * batch_train_beta
|
||||
loss.backward()
|
||||
# Adjust learning weights
|
||||
optimizer.step()
|
||||
|
||||
# Adjust learning weights
|
||||
optimizer.step()
|
||||
|
||||
step_log = dict(Epoch=epoch, Batch=batch,
|
||||
Metric='Task Loss', Score=loss.item())
|
||||
train_store.loc[train_store.shape[0]] = step_log
|
||||
if is_validation_epoch:
|
||||
metric(y.cpu(), batch_y.cpu())
|
||||
step_log = dict(Epoch=epoch, Batch=batch,
|
||||
Metric='Task Loss', Score=loss.item())
|
||||
train_store.loc[train_store.shape[0]] = step_log
|
||||
if is_validation_epoch:
|
||||
metric(y.cpu(), batch_y.cpu())
|
||||
|
||||
if batch >= 3 and debug:
|
||||
break
|
||||
|
||||
if is_validation_epoch:
|
||||
metanet = metanet.eval()
|
||||
validation_log = dict(Epoch=int(epoch), Batch=BATCHSIZE,
|
||||
Metric='Train Accuracy', Score=metric.compute().item())
|
||||
train_store.loc[train_store.shape[0]] = validation_log
|
||||
if train_to_id_first <= epoch:
|
||||
validation_log = dict(Epoch=int(epoch), Batch=BATCHSIZE,
|
||||
Metric='Train Accuracy', Score=metric.compute().item())
|
||||
train_store.loc[train_store.shape[0]] = validation_log
|
||||
|
||||
accuracy = checkpoint_and_validate(metanet, run_path, epoch)
|
||||
validation_log = dict(Epoch=int(epoch), Batch=BATCHSIZE,
|
||||
Metric='Test Accuracy', Score=accuracy.item())
|
||||
train_store.loc[train_store.shape[0]] = validation_log
|
||||
if particle_analysis:
|
||||
counter_dict = defaultdict(lambda: 0)
|
||||
# This returns ID-functions
|
||||
_ = test_for_fixpoints(counter_dict, list(metanet.particles))
|
||||
for key, value in dict(counter_dict).items():
|
||||
step_log = dict(Epoch=int(epoch), Batch=BATCHSIZE, Metric=key, Score=value)
|
||||
train_store.loc[train_store.shape[0]] = step_log
|
||||
if particle_analysis and (init_st or is_validation_epoch):
|
||||
counter_dict = defaultdict(lambda: 0)
|
||||
# This returns ID-functions
|
||||
_ = test_for_fixpoints(counter_dict, list(metanet.particles))
|
||||
for key, value in dict(counter_dict).items():
|
||||
step_log = dict(Epoch=int(epoch), Batch=BATCHSIZE, Metric=key, Score=value)
|
||||
train_store.loc[train_store.shape[0]] = step_log
|
||||
if init_st or is_validation_epoch:
|
||||
for particle in metanet.particles:
|
||||
weight_log = (epoch, particle.name, *flat_for_store(particle.parameters()))
|
||||
weight_store.loc[weight_store.shape[0]] = weight_log
|
||||
@ -355,7 +362,7 @@ if __name__ == '__main__':
|
||||
fig, ax = plt.subplots(ncols=2)
|
||||
labels = ['Full Network', 'Sparse, No Identity', 'Sparse, No Other']
|
||||
colors = sns.color_palette()[:diff_df.shape[0]] if diff_df.shape[0] >= 2 else sns.color_palette()[0]
|
||||
barplot = sns.barplot(data=diff_df, y='Accuracy', x='Particle Type', color=colors, ax=ax[0])
|
||||
barplot = sns.barplot(data=diff_df, y='Accuracy', x='Particle Type', palette=colors, ax=ax[0])
|
||||
# noinspection PyUnboundLocalVariable
|
||||
for idx, patch in enumerate(barplot.patches):
|
||||
if idx != 0:
|
||||
@ -366,7 +373,7 @@ if __name__ == '__main__':
|
||||
ax[0].set_xlabel('Accuracy')
|
||||
# ax[0].legend()
|
||||
|
||||
ax[1].pie(counter_dict.values(), labels=counter_dict.keys(), colors=sns.color_palette()[:3], )
|
||||
ax[1].pie(counter_dict.values(), labels=counter_dict.keys(), colors=colors, )
|
||||
ax[1].set_title('Particle Count for ')
|
||||
# ax[1].set_xlabel('')
|
||||
|
||||
|
BIN
figures/connectivity/identity.png
Normal file
BIN
figures/connectivity/identity.png
Normal file
Binary file not shown.
After Width: | Height: | Size: 98 KiB |
BIN
figures/connectivity/other.png
Normal file
BIN
figures/connectivity/other.png
Normal file
Binary file not shown.
After Width: | Height: | Size: 97 KiB |
BIN
figures/connectivity/training_lineplot.png
Normal file
BIN
figures/connectivity/training_lineplot.png
Normal file
Binary file not shown.
After Width: | Height: | Size: 198 KiB |
BIN
figures/connectivity/training_particle_type_lp.png
Normal file
BIN
figures/connectivity/training_particle_type_lp.png
Normal file
Binary file not shown.
After Width: | Height: | Size: 91 KiB |
@ -3,20 +3,7 @@ from typing import Dict, List
|
||||
import torch
|
||||
from tqdm import tqdm
|
||||
|
||||
from network import Net
|
||||
|
||||
|
||||
class FixTypes:
|
||||
|
||||
divergent = 'divergent'
|
||||
fix_zero = 'fix_zero'
|
||||
identity_func = 'identity_func'
|
||||
fix_sec = 'fix_sec'
|
||||
other_func = 'other_func'
|
||||
|
||||
@classmethod
|
||||
def all_types(cls):
|
||||
return [val for key, val in cls.__dict__.items() if isinstance(val, str) and not key.startswith('_')]
|
||||
from network import FixTypes, Net
|
||||
|
||||
|
||||
def is_divergent(network: Net) -> bool:
|
||||
|
0
helpers.py
Normal file
0
helpers.py
Normal file
14
network.py
14
network.py
@ -15,6 +15,18 @@ from tqdm import tqdm
|
||||
def prng():
|
||||
return random.random()
|
||||
|
||||
class FixTypes:
|
||||
|
||||
divergent = 'divergent'
|
||||
fix_zero = 'fix_zero'
|
||||
identity_func = 'identity_func'
|
||||
fix_sec = 'fix_sec'
|
||||
other_func = 'other_func'
|
||||
|
||||
@classmethod
|
||||
def all_types(cls):
|
||||
return [val for key, val in cls.__dict__.items() if isinstance(val, str) and not key.startswith('_')]
|
||||
|
||||
|
||||
class Net(nn.Module):
|
||||
|
||||
@ -79,7 +91,7 @@ class Net(nn.Module):
|
||||
self.trained = False
|
||||
self.number_trained = 0
|
||||
|
||||
self.is_fixpoint = ""
|
||||
self.is_fixpoint = FixTypes.other_func
|
||||
self.layers = nn.ModuleList(
|
||||
[nn.Linear(i_size, h_size, False),
|
||||
nn.Linear(h_size, h_size, False),
|
||||
|
Loading…
x
Reference in New Issue
Block a user