weightwise experiments
This commit is contained in:
Binary file not shown.
File diff suppressed because one or more lines are too long
@@ -1 +0,0 @@
|
|||||||
{'divergent': 38, 'fix_zero': 62, 'fix_other': 0, 'fix_sec': 0, 'other': 0}
|
|
Binary file not shown.
File diff suppressed because one or more lines are too long
@@ -1 +0,0 @@
|
|||||||
{'divergent': 0, 'fix_zero': 100, 'fix_other': 0, 'fix_sec': 0, 'other': 0}
|
|
Binary file not shown.
File diff suppressed because one or more lines are too long
Binary file not shown.
File diff suppressed because one or more lines are too long
@@ -1 +0,0 @@
|
|||||||
{'divergent': 3, 'fix_zero': 97, 'fix_other': 0, 'fix_sec': 0, 'other': 0}
|
|
Binary file not shown.
Binary file not shown.
Binary file not shown.
Binary file not shown.
@@ -1,36 +0,0 @@
|
|||||||
ParticleDecorator activiation='linear' use_bias='False'
|
|
||||||
{'divergent': 0, 'fix_zero': 0, 'fix_other': 0, 'fix_sec': 0, 'other': 100}
|
|
||||||
|
|
||||||
|
|
||||||
ParticleDecorator activiation='linear' use_bias='False'
|
|
||||||
{'divergent': 0, 'fix_zero': 0, 'fix_other': 0, 'fix_sec': 0, 'other': 100}
|
|
||||||
|
|
||||||
|
|
||||||
ParticleDecorator activiation='linear' use_bias='False'
|
|
||||||
{'divergent': 0, 'fix_zero': 0, 'fix_other': 0, 'fix_sec': 0, 'other': 100}
|
|
||||||
|
|
||||||
|
|
||||||
ParticleDecorator activiation='sigmoid' use_bias='False'
|
|
||||||
{'divergent': 0, 'fix_zero': 0, 'fix_other': 0, 'fix_sec': 0, 'other': 100}
|
|
||||||
|
|
||||||
|
|
||||||
ParticleDecorator activiation='sigmoid' use_bias='False'
|
|
||||||
{'divergent': 0, 'fix_zero': 0, 'fix_other': 0, 'fix_sec': 0, 'other': 100}
|
|
||||||
|
|
||||||
|
|
||||||
ParticleDecorator activiation='sigmoid' use_bias='False'
|
|
||||||
{'divergent': 0, 'fix_zero': 0, 'fix_other': 0, 'fix_sec': 0, 'other': 100}
|
|
||||||
|
|
||||||
|
|
||||||
ParticleDecorator activiation='relu' use_bias='False'
|
|
||||||
{'divergent': 0, 'fix_zero': 0, 'fix_other': 0, 'fix_sec': 0, 'other': 100}
|
|
||||||
|
|
||||||
|
|
||||||
ParticleDecorator activiation='relu' use_bias='False'
|
|
||||||
{'divergent': 0, 'fix_zero': 0, 'fix_other': 0, 'fix_sec': 0, 'other': 100}
|
|
||||||
|
|
||||||
|
|
||||||
ParticleDecorator activiation='relu' use_bias='False'
|
|
||||||
{'divergent': 0, 'fix_zero': 0, 'fix_other': 0, 'fix_sec': 0, 'other': 100}
|
|
||||||
|
|
||||||
|
|
File diff suppressed because one or more lines are too long
@@ -1,30 +0,0 @@
|
|||||||
variation 10e-0
|
|
||||||
avg time to vergence 3.72
|
|
||||||
avg time as fixpoint 0
|
|
||||||
variation 10e-1
|
|
||||||
avg time to vergence 5.13
|
|
||||||
avg time as fixpoint 0
|
|
||||||
variation 10e-2
|
|
||||||
avg time to vergence 6.53
|
|
||||||
avg time as fixpoint 0
|
|
||||||
variation 10e-3
|
|
||||||
avg time to vergence 8.09
|
|
||||||
avg time as fixpoint 0
|
|
||||||
variation 10e-4
|
|
||||||
avg time to vergence 9.81
|
|
||||||
avg time as fixpoint 0.06
|
|
||||||
variation 10e-5
|
|
||||||
avg time to vergence 11.43
|
|
||||||
avg time as fixpoint 1.51
|
|
||||||
variation 10e-6
|
|
||||||
avg time to vergence 13.15
|
|
||||||
avg time as fixpoint 3.34
|
|
||||||
variation 10e-7
|
|
||||||
avg time to vergence 14.57
|
|
||||||
avg time as fixpoint 4.79
|
|
||||||
variation 10e-8
|
|
||||||
avg time to vergence 22.41
|
|
||||||
avg time as fixpoint 12.37
|
|
||||||
variation 10e-9
|
|
||||||
avg time to vergence 26.17
|
|
||||||
avg time as fixpoint 16.11
|
|
Binary file not shown.
Binary file not shown.
Binary file not shown.
@@ -1,8 +0,0 @@
|
|||||||
ParticleDecorator activiation='linear' use_bias=False
|
|
||||||
{'xs': [0, 100, 200, 300, 400, 500, 600, 700, 800, 900, 1000], 'ys': [0.45, 0.4, 0.6, 0.8, 0.95, 0.85, 0.95, 0.85, 0.9, 1.0, 0.8]}
|
|
||||||
|
|
||||||
|
|
||||||
ParticleDecorator activiation='linear' use_bias=False
|
|
||||||
{'xs': [0, 100, 200, 300, 400, 500, 600, 700, 800, 900, 1000], 'ys': [0.95, 0.9, 0.9, 0.9, 0.95, 0.8, 0.9, 0.9, 0.85, 0.85, 0.9]}
|
|
||||||
|
|
||||||
|
|
Binary file not shown.
File diff suppressed because one or more lines are too long
Binary file not shown.
Binary file not shown.
@@ -35,8 +35,8 @@ if __name__ == '__main__':
|
|||||||
exp.epsilon = 1e-4
|
exp.epsilon = 1e-4
|
||||||
net_generators = []
|
net_generators = []
|
||||||
for activation in ['linear', 'sigmoid', 'relu']:
|
for activation in ['linear', 'sigmoid', 'relu']:
|
||||||
net_generators += [lambda activation=activation: WeightwiseNeuralNetwork(width=2, depth=2).with_keras_params(activation=activation, use_bias=False)]
|
# net_generators += [lambda activation=activation: WeightwiseNeuralNetwork(width=2, depth=2).with_keras_params(activation=activation, use_bias=False)]
|
||||||
# net_generators += [lambda activation=activation: AggregatingNeuralNetwork(aggregates=4, width=2, depth=2).with_keras_params(activation=activation, use_bias=False)]
|
net_generators += [lambda activation=activation: AggregatingNeuralNetwork(aggregates=4, width=2, depth=2).with_keras_params(activation=activation, use_bias=False)]
|
||||||
# net_generators += [lambda activation=activation: FFTNeuralNetwork(aggregates=4, width=2, depth=2).with_keras_params(activation=activation, use_bias=False)]
|
# net_generators += [lambda activation=activation: FFTNeuralNetwork(aggregates=4, width=2, depth=2).with_keras_params(activation=activation, use_bias=False)]
|
||||||
# net_generators += [lambda activation=activation: RecurrentNeuralNetwork(width=2, depth=2).with_keras_params(activation=activation, use_bias=False)]
|
# net_generators += [lambda activation=activation: RecurrentNeuralNetwork(width=2, depth=2).with_keras_params(activation=activation, use_bias=False)]
|
||||||
all_counters = []
|
all_counters = []
|
||||||
|
@@ -26,7 +26,8 @@ def generate_fixpoint_weights():
|
|||||||
|
|
||||||
|
|
||||||
def generate_fixpoint_net():
|
def generate_fixpoint_net():
|
||||||
net = WeightwiseNeuralNetwork(width=2, depth=2).with_keras_params(activation='sigmoid')
|
# net = WeightwiseNeuralNetwork(width=2, depth=2).with_keras_params(activation='sigmoid')
|
||||||
|
net = AggregatingNeuralNetwork(width=2, depth=2).with_keras_params(activation='sigmoid')
|
||||||
net.set_weights(generate_fixpoint_weights())
|
net.set_weights(generate_fixpoint_weights())
|
||||||
return net
|
return net
|
||||||
|
|
||||||
|
@@ -68,8 +68,8 @@ with SoupExperiment('learn-from-soup') as exp:
|
|||||||
net_generators = []
|
net_generators = []
|
||||||
for activation in ['sigmoid']: #['linear', 'sigmoid', 'relu']:
|
for activation in ['sigmoid']: #['linear', 'sigmoid', 'relu']:
|
||||||
for use_bias in [False]:
|
for use_bias in [False]:
|
||||||
net_generators += [lambda activation=activation, use_bias=use_bias: WeightwiseNeuralNetwork(width=2, depth=2).with_keras_params(activation=activation, use_bias=use_bias)]
|
# net_generators += [lambda activation=activation, use_bias=use_bias: WeightwiseNeuralNetwork(width=2, depth=2).with_keras_params(activation=activation, use_bias=use_bias)]
|
||||||
# net_generators += [lambda activation=activation, use_bias=use_bias: AggregatingNeuralNetwork(aggregates=4, width=2, depth=2).with_keras_params(activation=activation, use_bias=use_bias)]
|
net_generators += [lambda activation=activation, use_bias=use_bias: AggregatingNeuralNetwork(aggregates=4, width=2, depth=2).with_keras_params(activation=activation, use_bias=use_bias)]
|
||||||
# net_generators += [lambda activation=activation, use_bias=use_bias: RecurrentNeuralNetwork(width=2, depth=2).with_keras_params(activation=activation, use_bias=use_bias)]
|
# net_generators += [lambda activation=activation, use_bias=use_bias: RecurrentNeuralNetwork(width=2, depth=2).with_keras_params(activation=activation, use_bias=use_bias)]
|
||||||
|
|
||||||
all_names = []
|
all_names = []
|
||||||
|
@@ -60,8 +60,8 @@ if __name__ == '__main__':
|
|||||||
net_generators = []
|
net_generators = []
|
||||||
for activation in ['linear']: # , 'sigmoid', 'relu']:
|
for activation in ['linear']: # , 'sigmoid', 'relu']:
|
||||||
for use_bias in [False]:
|
for use_bias in [False]:
|
||||||
net_generators += [lambda activation=activation, use_bias=use_bias: WeightwiseNeuralNetwork(width=2, depth=2).with_keras_params(activation=activation, use_bias=use_bias)]
|
# net_generators += [lambda activation=activation, use_bias=use_bias: WeightwiseNeuralNetwork(width=2, depth=2).with_keras_params(activation=activation, use_bias=use_bias)]
|
||||||
# net_generators += [lambda activation=activation, use_bias=use_bias: AggregatingNeuralNetwork(aggregates=4, width=2, depth=2).with_keras_params(activation=activation, use_bias=use_bias)]
|
net_generators += [lambda activation=activation, use_bias=use_bias: AggregatingNeuralNetwork(aggregates=4, width=2, depth=2).with_keras_params(activation=activation, use_bias=use_bias)]
|
||||||
# net_generators += [lambda activation=activation, use_bias=use_bias: FFTNeuralNetwork(aggregates=4, width=2, depth=2).with_keras_params(activation=activation, use_bias=use_bias)]
|
# net_generators += [lambda activation=activation, use_bias=use_bias: FFTNeuralNetwork(aggregates=4, width=2, depth=2).with_keras_params(activation=activation, use_bias=use_bias)]
|
||||||
# net_generators += [lambda activation=activation, use_bias=use_bias: RecurrentNeuralNetwork(width=2, depth=2).with_keras_params(activation=activation, use_bias=use_bias)]
|
# net_generators += [lambda activation=activation, use_bias=use_bias: RecurrentNeuralNetwork(width=2, depth=2).with_keras_params(activation=activation, use_bias=use_bias)]
|
||||||
|
|
||||||
|
@@ -62,8 +62,8 @@ with Experiment('mixed-self-fixpoints') as exp:
|
|||||||
net_generators = []
|
net_generators = []
|
||||||
for activation in ['linear']: #['linear', 'sigmoid', 'relu']:
|
for activation in ['linear']: #['linear', 'sigmoid', 'relu']:
|
||||||
for use_bias in [False]:
|
for use_bias in [False]:
|
||||||
net_generators += [lambda activation=activation, use_bias=use_bias: WeightwiseNeuralNetwork(width=2, depth=2).with_keras_params(activation=activation, use_bias=use_bias)]
|
# net_generators += [lambda activation=activation, use_bias=use_bias: WeightwiseNeuralNetwork(width=2, depth=2).with_keras_params(activation=activation, use_bias=use_bias)]
|
||||||
# net_generators += [lambda activation=activation, use_bias=use_bias: AggregatingNeuralNetwork(aggregates=4, width=2, depth=2).with_keras_params(activation=activation, use_bias=use_bias)]
|
net_generators += [lambda activation=activation, use_bias=use_bias: AggregatingNeuralNetwork(aggregates=4, width=2, depth=2).with_keras_params(activation=activation, use_bias=use_bias)]
|
||||||
# net_generators += [lambda activation=activation, use_bias=use_bias: RecurrentNeuralNetwork(width=2, depth=2).with_keras_params(activation=activation, use_bias=use_bias)]
|
# net_generators += [lambda activation=activation, use_bias=use_bias: RecurrentNeuralNetwork(width=2, depth=2).with_keras_params(activation=activation, use_bias=use_bias)]
|
||||||
|
|
||||||
all_names = []
|
all_names = []
|
||||||
|
@@ -39,8 +39,8 @@ if __name__ == '__main__':
|
|||||||
net_generators = []
|
net_generators = []
|
||||||
for activation in ['linear']: # , 'sigmoid', 'relu']:
|
for activation in ['linear']: # , 'sigmoid', 'relu']:
|
||||||
for use_bias in [False]:
|
for use_bias in [False]:
|
||||||
net_generators += [lambda activation=activation, use_bias=use_bias: WeightwiseNeuralNetwork(width=2, depth=2).with_keras_params(activation=activation, use_bias=use_bias)]
|
# net_generators += [lambda activation=activation, use_bias=use_bias: WeightwiseNeuralNetwork(width=2, depth=2).with_keras_params(activation=activation, use_bias=use_bias)]
|
||||||
# net_generators += [lambda activation=activation, use_bias=use_bias: AggregatingNeuralNetwork(aggregates=4, width=2, depth=2).with_keras_params(activation=activation, use_bias=use_bias)]
|
net_generators += [lambda activation=activation, use_bias=use_bias: AggregatingNeuralNetwork(aggregates=4, width=2, depth=2).with_keras_params(activation=activation, use_bias=use_bias)]
|
||||||
# net_generators += [lambda activation=activation, use_bias=use_bias: RecurrentNeuralNetwork(width=2, depth=2).with_keras_params(activation=activation, use_bias=use_bias)]
|
# net_generators += [lambda activation=activation, use_bias=use_bias: RecurrentNeuralNetwork(width=2, depth=2).with_keras_params(activation=activation, use_bias=use_bias)]
|
||||||
all_counters = []
|
all_counters = []
|
||||||
all_notable_nets = []
|
all_notable_nets = []
|
||||||
|
Binary file not shown.
Binary file not shown.
Binary file not shown.
Binary file not shown.
@@ -0,0 +1,12 @@
|
|||||||
|
ParticleDecorator activiation='linear' use_bias='False'
|
||||||
|
{'divergent': 0, 'fix_zero': 0, 'fix_other': 0, 'fix_sec': 0, 'other': 100}
|
||||||
|
|
||||||
|
|
||||||
|
ParticleDecorator activiation='sigmoid' use_bias='False'
|
||||||
|
{'divergent': 0, 'fix_zero': 0, 'fix_other': 0, 'fix_sec': 0, 'other': 100}
|
||||||
|
|
||||||
|
|
||||||
|
ParticleDecorator activiation='relu' use_bias='False'
|
||||||
|
{'divergent': 0, 'fix_zero': 0, 'fix_other': 0, 'fix_sec': 0, 'other': 100}
|
||||||
|
|
||||||
|
|
Binary file not shown.
@@ -0,0 +1,30 @@
|
|||||||
|
variation 10e-0
|
||||||
|
avg time to vergence 3.65
|
||||||
|
avg time as fixpoint 0
|
||||||
|
variation 10e-1
|
||||||
|
avg time to vergence 5.07
|
||||||
|
avg time as fixpoint 0
|
||||||
|
variation 10e-2
|
||||||
|
avg time to vergence 6.49
|
||||||
|
avg time as fixpoint 0
|
||||||
|
variation 10e-3
|
||||||
|
avg time to vergence 7.97
|
||||||
|
avg time as fixpoint 0
|
||||||
|
variation 10e-4
|
||||||
|
avg time to vergence 9.81
|
||||||
|
avg time as fixpoint 0.04
|
||||||
|
variation 10e-5
|
||||||
|
avg time to vergence 11.4
|
||||||
|
avg time as fixpoint 1.51
|
||||||
|
variation 10e-6
|
||||||
|
avg time to vergence 13.14
|
||||||
|
avg time as fixpoint 3.26
|
||||||
|
variation 10e-7
|
||||||
|
avg time to vergence 14.63
|
||||||
|
avg time as fixpoint 4.95
|
||||||
|
variation 10e-8
|
||||||
|
avg time to vergence 21.35
|
||||||
|
avg time as fixpoint 11.47
|
||||||
|
variation 10e-9
|
||||||
|
avg time to vergence 26.36
|
||||||
|
avg time as fixpoint 16.3
|
Binary file not shown.
Binary file not shown.
Binary file not shown.
@@ -0,0 +1,4 @@
|
|||||||
|
TrainingNeuralNetworkDecorator activiation='sigmoid' use_bias=False
|
||||||
|
{'xs': [0, 10, 20, 30, 40, 50, 60, 70, 80, 90, 100], 'ys': [0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0], 'zs': [0.0, 1.0, 3.4, 7.0, 8.3, 9.3, 9.9, 9.5, 9.7, 9.9, 10.0]}
|
||||||
|
|
||||||
|
|
Binary file not shown.
Binary file not shown.
Binary file not shown.
@@ -0,0 +1,4 @@
|
|||||||
|
TrainingNeuralNetworkDecorator activiation='linear' use_bias=False
|
||||||
|
{'xs': [0, 10, 20, 30, 40, 50, 60, 70, 80, 90, 100], 'ys': [0.2, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.2, 0.0, 0.0], 'zs': [0.0, 0.0, 0.6, 2.2, 3.5, 4.8, 5.6, 7.1, 8.3, 7.5, 9.0]}
|
||||||
|
|
||||||
|
|
Binary file not shown.
Binary file not shown.
Binary file not shown.
@@ -0,0 +1,4 @@
|
|||||||
|
ParticleDecorator activiation='linear' use_bias=False
|
||||||
|
{'xs': [0, 100, 200, 300, 400, 500, 600, 700, 800, 900, 1000], 'ys': [0.4, 0.45, 0.7, 0.9, 1.0, 0.9, 0.9, 1.0, 0.9, 0.9, 0.9]}
|
||||||
|
|
||||||
|
|
Binary file not shown.
Binary file not shown.
Binary file not shown.
@@ -2,7 +2,3 @@ ParticleDecorator activiation='linear' use_bias=False
|
|||||||
{'divergent': 0, 'fix_zero': 0, 'fix_other': 19, 'fix_sec': 0, 'other': 1}
|
{'divergent': 0, 'fix_zero': 0, 'fix_other': 19, 'fix_sec': 0, 'other': 1}
|
||||||
|
|
||||||
|
|
||||||
ParticleDecorator activiation='linear' use_bias=False
|
|
||||||
{'divergent': 0, 'fix_zero': 0, 'fix_other': 0, 'fix_sec': 0, 'other': 20}
|
|
||||||
|
|
||||||
|
|
Reference in New Issue
Block a user