Gelaber
This commit is contained in:
parent
fd215be5de
commit
252716c420
@ -36,7 +36,7 @@ if __name__ == '__main__':
|
||||
net_generators = []
|
||||
for activation in ['linear', 'sigmoid', 'relu']:
|
||||
net_generators += [lambda activation=activation: WeightwiseNeuralNetwork(width=2, depth=2).with_keras_params(activation=activation, use_bias=False)]
|
||||
net_generators += [lambda activation=activation: AggregatingNeuralNetwork(aggregates=4, width=2, depth=2).with_keras_params(activation=activation, use_bias=False)]
|
||||
# net_generators += [lambda activation=activation: AggregatingNeuralNetwork(aggregates=4, width=2, depth=2).with_keras_params(activation=activation, use_bias=False)]
|
||||
# net_generators += [lambda activation=activation: FFTNeuralNetwork(aggregates=4, width=2, depth=2).with_keras_params(activation=activation, use_bias=False)]
|
||||
# net_generators += [lambda activation=activation: RecurrentNeuralNetwork(width=2, depth=2).with_keras_params(activation=activation, use_bias=False)]
|
||||
all_counters = []
|
||||
|
@ -61,15 +61,15 @@ def count(counters, soup, notable_nets=[]):
|
||||
|
||||
with SoupExperiment('learn-from-soup') as exp:
|
||||
exp.soup_size = 10
|
||||
exp.soup_life = 1000
|
||||
exp.trials = 20
|
||||
exp.soup_life = 100
|
||||
exp.trials = 10
|
||||
exp.learn_from_severity_values = [10 * i for i in range(11)]
|
||||
exp.epsilon = 1e-4
|
||||
net_generators = []
|
||||
for activation in ['sigmoid']: #['linear', 'sigmoid', 'relu']:
|
||||
for use_bias in [False]:
|
||||
net_generators += [lambda activation=activation, use_bias=use_bias: WeightwiseNeuralNetwork(width=2, depth=2).with_keras_params(activation=activation, use_bias=use_bias)]
|
||||
net_generators += [lambda activation=activation, use_bias=use_bias: AggregatingNeuralNetwork(aggregates=4, width=2, depth=2).with_keras_params(activation=activation, use_bias=use_bias)]
|
||||
# net_generators += [lambda activation=activation, use_bias=use_bias: AggregatingNeuralNetwork(aggregates=4, width=2, depth=2).with_keras_params(activation=activation, use_bias=use_bias)]
|
||||
# net_generators += [lambda activation=activation, use_bias=use_bias: RecurrentNeuralNetwork(width=2, depth=2).with_keras_params(activation=activation, use_bias=use_bias)]
|
||||
|
||||
all_names = []
|
||||
|
@ -61,7 +61,7 @@ if __name__ == '__main__':
|
||||
for activation in ['linear']: # , 'sigmoid', 'relu']:
|
||||
for use_bias in [False]:
|
||||
net_generators += [lambda activation=activation, use_bias=use_bias: WeightwiseNeuralNetwork(width=2, depth=2).with_keras_params(activation=activation, use_bias=use_bias)]
|
||||
net_generators += [lambda activation=activation, use_bias=use_bias: AggregatingNeuralNetwork(aggregates=4, width=2, depth=2).with_keras_params(activation=activation, use_bias=use_bias)]
|
||||
# net_generators += [lambda activation=activation, use_bias=use_bias: AggregatingNeuralNetwork(aggregates=4, width=2, depth=2).with_keras_params(activation=activation, use_bias=use_bias)]
|
||||
# net_generators += [lambda activation=activation, use_bias=use_bias: FFTNeuralNetwork(aggregates=4, width=2, depth=2).with_keras_params(activation=activation, use_bias=use_bias)]
|
||||
# net_generators += [lambda activation=activation, use_bias=use_bias: RecurrentNeuralNetwork(width=2, depth=2).with_keras_params(activation=activation, use_bias=use_bias)]
|
||||
|
||||
|
@ -54,7 +54,7 @@ def count(counters, soup, notable_nets=[]):
|
||||
|
||||
|
||||
with Experiment('mixed-self-fixpoints') as exp:
|
||||
exp.trials = 100
|
||||
exp.trials = 10
|
||||
exp.soup_size = 10
|
||||
exp.soup_life = 5
|
||||
exp.trains_per_selfattack_values = [10 * i for i in range(11)]
|
||||
|
@ -40,7 +40,7 @@ if __name__ == '__main__':
|
||||
for activation in ['linear']: # , 'sigmoid', 'relu']:
|
||||
for use_bias in [False]:
|
||||
net_generators += [lambda activation=activation, use_bias=use_bias: WeightwiseNeuralNetwork(width=2, depth=2).with_keras_params(activation=activation, use_bias=use_bias)]
|
||||
net_generators += [lambda activation=activation, use_bias=use_bias: AggregatingNeuralNetwork(aggregates=4, width=2, depth=2).with_keras_params(activation=activation, use_bias=use_bias)]
|
||||
# net_generators += [lambda activation=activation, use_bias=use_bias: AggregatingNeuralNetwork(aggregates=4, width=2, depth=2).with_keras_params(activation=activation, use_bias=use_bias)]
|
||||
# net_generators += [lambda activation=activation, use_bias=use_bias: RecurrentNeuralNetwork(width=2, depth=2).with_keras_params(activation=activation, use_bias=use_bias)]
|
||||
all_counters = []
|
||||
all_notable_nets = []
|
||||
|
Loading…
x
Reference in New Issue
Block a user