Added plot variations for basin exp.
This commit is contained in:
		| @@ -78,3 +78,18 @@ def test_for_fixpoints(fixpoint_counter: Dict, nets: List, id_functions=None): | ||||
|  | ||||
| def changing_rate(x_new, x_old): | ||||
|     return x_new - x_old | ||||
|  | ||||
| def test_status(net: Net) -> Net: | ||||
|  | ||||
|     if is_divergent(net): | ||||
|         net.is_fixpoint = "divergent" | ||||
|     elif is_identity_function(net):  # is default value | ||||
|         net.is_fixpoint = "identity_func" | ||||
|     elif is_zero_fixpoint(net): | ||||
|         net.is_fixpoint = "fix_zero" | ||||
|     elif is_secondary_fixpoint(net): | ||||
|         net.is_fixpoint = "fix_sec" | ||||
|     else: | ||||
|         net.is_fixpoint = "other_func" | ||||
|  | ||||
|     return net | ||||
| @@ -1,18 +1,21 @@ | ||||
| import os | ||||
| from pathlib import Path | ||||
| import pickle | ||||
| from torch import mean | ||||
|  | ||||
| from tqdm import tqdm | ||||
| import random | ||||
| import copy | ||||
| from functionalities_test import is_identity_function | ||||
| from functionalities_test import is_identity_function, test_status | ||||
| from network import Net | ||||
| from visualization import plot_3d_self_train, plot_loss | ||||
| import numpy as np | ||||
| from tabulate import tabulate | ||||
| from sklearn.metrics import mean_absolute_error as MAE | ||||
| from sklearn.metrics import mean_squared_error as MSE | ||||
|  | ||||
| import pandas as pd | ||||
| import seaborn as sns | ||||
| from matplotlib import pyplot as plt | ||||
|  | ||||
| def prng(): | ||||
|     return random.random() | ||||
| @@ -120,8 +123,8 @@ class SpawnExperiment: | ||||
|         self.spawn_and_continue() | ||||
|         self.weights_evolution_3d_experiment() | ||||
|         # self.visualize_loss() | ||||
|         self.distance_matrix = distance_matrix(self.nets) | ||||
|         self.parent_clone_distances = distance_from_parent(self.nets) | ||||
|         self.distance_matrix = distance_matrix(self.nets, print_it=False) | ||||
|         self.parent_clone_distances = distance_from_parent(self.nets, print_it=False) | ||||
|  | ||||
|         self.save() | ||||
|  | ||||
| @@ -136,13 +139,13 @@ class SpawnExperiment: | ||||
|             for _ in range(self.ST_steps): | ||||
|                 net.self_train(1, self.log_step_size, self.net_learning_rate) | ||||
|  | ||||
|             # print(f"\nLast weight matrix (epoch: {self.epochs}):\n | ||||
|             # {net.input_weight_matrix()}\nLossHistory: {net.loss_history[-10:]}") | ||||
|             self.nets.append(net) | ||||
|  | ||||
|     def spawn_and_continue(self, number_clones: int = None): | ||||
|         number_clones = number_clones or self.nr_clones | ||||
|  | ||||
|         df = pd.DataFrame(columns=['parent', 'MAE_pre','MAE_post', 'MSE_pre', 'MSE_post', 'MIM_pre', 'MIM_post', 'noise', 'status_post']) | ||||
|  | ||||
|         # For every initial net {i} after populating (that is fixpoint after first epoch); | ||||
|         for i in range(self.population_size): | ||||
|             net = self.nets[i] | ||||
| @@ -169,25 +172,45 @@ class SpawnExperiment: | ||||
|                     clone.s_train_weights_history = copy.deepcopy(net.s_train_weights_history) | ||||
|                     clone.number_trained = copy.deepcopy(net.number_trained) | ||||
|                      | ||||
|                     # Then finish training each clone {j} (for remaining epoch-1 * ST_steps) | ||||
|                     # and add to nets for plotting if they are fixpoints themselves; | ||||
|                     # Pre Training distances (after noise application of course) | ||||
|                     clone_pre_weights = clone.create_target_weights(clone.input_weight_matrix()) | ||||
|                     MAE_pre = MAE(net_target_data, clone_pre_weights) | ||||
|                     MSE_pre = MSE(net_target_data, clone_pre_weights) | ||||
|                     MIM_pre = mean_invariate_manhattan_distance(net_target_data, clone_pre_weights) | ||||
|  | ||||
|                     # Then finish training each clone {j} (for remaining epoch-1 * ST_steps) .. | ||||
|                     for _ in range(self.epochs - 1): | ||||
|                         for _ in range(self.ST_steps): | ||||
|                             clone.self_train(1, self.log_step_size, self.net_learning_rate) | ||||
|                      | ||||
|                     # Post Training distances for comparison | ||||
|                     clone_post_weights = clone.create_target_weights(clone.input_weight_matrix()) | ||||
|                     MAE_post = MAE(net_target_data, clone_post_weights) | ||||
|                     MSE_post = MSE(net_target_data, clone_post_weights) | ||||
|                     MIM_post = mean_invariate_manhattan_distance(net_target_data, clone_post_weights) | ||||
|  | ||||
|                     # .. log to data-frame and add to nets for 3d plotting if they are fixpoints themselves. | ||||
|                     test_status(clone) | ||||
|                     if is_identity_function(clone): | ||||
|                         input_data = clone.input_weight_matrix() | ||||
|                         target_data = clone.create_target_weights(input_data) | ||||
|                         print(f"Clone {j} (of net_{i}) is fixpoint. \nMSE(j,i): " | ||||
|                               f"{MSE(net_target_data, target_data)}, \nMAE(j,i): {MAE(net_target_data, target_data)}\n") | ||||
|                         print(f"Clone {j} (of net_{i}) is fixpoint."  | ||||
|                               f"\nMSE({i},{j}): {MSE_post}" | ||||
|                               f"\nMAE({i},{j}): {MAE_post}" | ||||
|                               f"\nMIM({i},{j}): {MIM_post}\n") | ||||
|                         self.nets.append(clone) | ||||
|  | ||||
|                     df.loc[clone.name] = [net.name, MAE_pre, MAE_post, MSE_pre, MSE_post, MIM_pre, MIM_post, self.noise, clone.is_fixpoint] | ||||
|  | ||||
|                 # Finally take parent net {i} and finish it's training for comparison to clone development. | ||||
|                 for _ in range(self.epochs - 1): | ||||
|                     for _ in range(self.ST_steps): | ||||
|                         net.self_train(1, self.log_step_size, self.net_learning_rate) | ||||
|                 net_weights_after = net.create_target_weights(net.input_weight_matrix()) | ||||
|                 print(f"Parent net's distance to original position."  | ||||
|                               f"\nMSE(OG,new): {MAE(net_target_data, net_weights_after)}" | ||||
|                               f"\nMAE(OG,new): {MSE(net_target_data, net_weights_after)}" | ||||
|                               f"\nMIM(OG,new): {mean_invariate_manhattan_distance(net_target_data, net_weights_after)}\n") | ||||
|  | ||||
|         else: | ||||
|             print("No fixpoints found.") | ||||
|         self.df = df | ||||
|  | ||||
|     def weights_evolution_3d_experiment(self): | ||||
|         exp_name = f"ST_{str(len(self.nets))}_nets_3d_weights_PCA" | ||||
| @@ -217,15 +240,16 @@ if __name__ == "__main__": | ||||
|     ST_log_step_size = 10 | ||||
|  | ||||
|     # Define number of networks & their architecture | ||||
|     nr_clones = 10 | ||||
|     ST_population_size = 3 | ||||
|     nr_clones = 5 | ||||
|     ST_population_size = 1 | ||||
|     ST_net_hidden_size = 2 | ||||
|     ST_net_learning_rate = 0.04 | ||||
|     ST_name_hash = random.getrandbits(32) | ||||
|  | ||||
|     print(f"Running the Spawn experiment:") | ||||
|     for noise_factor in [1]: | ||||
|         SpawnExperiment( | ||||
|     exp_list = [] | ||||
|     for noise_factor in range(2,5): | ||||
|         exp = SpawnExperiment( | ||||
|             population_size=ST_population_size, | ||||
|             log_step_size=ST_log_step_size, | ||||
|             net_input_size=NET_INPUT_SIZE, | ||||
| @@ -236,5 +260,16 @@ if __name__ == "__main__": | ||||
|             st_steps=ST_steps, | ||||
|             nr_clones=nr_clones, | ||||
|             noise=pow(10, -noise_factor), | ||||
|             directory=Path('output') / 'spawn_basin' / f'{ST_name_hash}_10e-{noise_factor}' | ||||
|             directory=Path('output') / 'spawn_basin' / f'{ST_name_hash}' / f'10e-{noise_factor}' | ||||
|         ) | ||||
|         exp_list.append(exp) | ||||
|  | ||||
|     # Boxplot with counts of nr_fixpoints, nr_other, nr_etc. on y-axis | ||||
|     df = pd.concat([exp.df for exp in exp_list]) | ||||
|     sns.countplot(data=df, x="noise", hue="status_post") | ||||
|     plt.savefig(f"output/spawn_basin/{ST_name_hash}/fixpoint_status_countplot.png") | ||||
|  | ||||
|     # Catplot (either kind="point" or "box") that shows before-after training distances to parent | ||||
|     mlt = df[["MIM_pre", "MIM_post", "noise"]].melt("noise", var_name="time", value_name='Average Distance') | ||||
|     sns.catplot(data=mlt, x="time", y="Average Distance", col="noise", kind="point", col_wrap=5, sharey=False) | ||||
|     plt.savefig(f"output/spawn_basin/{ST_name_hash}/clone_distance_catplot.png") | ||||
		Reference in New Issue
	
	Block a user
	 Maximilian Zorn
					Maximilian Zorn