Added plot variations for basin exp.
This commit is contained in:
		| @@ -78,3 +78,18 @@ def test_for_fixpoints(fixpoint_counter: Dict, nets: List, id_functions=None): | |||||||
|  |  | ||||||
| def changing_rate(x_new, x_old): | def changing_rate(x_new, x_old): | ||||||
|     return x_new - x_old |     return x_new - x_old | ||||||
|  |  | ||||||
|  | def test_status(net: Net) -> Net: | ||||||
|  |  | ||||||
|  |     if is_divergent(net): | ||||||
|  |         net.is_fixpoint = "divergent" | ||||||
|  |     elif is_identity_function(net):  # is default value | ||||||
|  |         net.is_fixpoint = "identity_func" | ||||||
|  |     elif is_zero_fixpoint(net): | ||||||
|  |         net.is_fixpoint = "fix_zero" | ||||||
|  |     elif is_secondary_fixpoint(net): | ||||||
|  |         net.is_fixpoint = "fix_sec" | ||||||
|  |     else: | ||||||
|  |         net.is_fixpoint = "other_func" | ||||||
|  |  | ||||||
|  |     return net | ||||||
| @@ -1,18 +1,21 @@ | |||||||
| import os | import os | ||||||
| from pathlib import Path | from pathlib import Path | ||||||
| import pickle | import pickle | ||||||
|  | from torch import mean | ||||||
|  |  | ||||||
| from tqdm import tqdm | from tqdm import tqdm | ||||||
| import random | import random | ||||||
| import copy | import copy | ||||||
| from functionalities_test import is_identity_function | from functionalities_test import is_identity_function, test_status | ||||||
| from network import Net | from network import Net | ||||||
| from visualization import plot_3d_self_train, plot_loss | from visualization import plot_3d_self_train, plot_loss | ||||||
| import numpy as np | import numpy as np | ||||||
| from tabulate import tabulate | from tabulate import tabulate | ||||||
| from sklearn.metrics import mean_absolute_error as MAE | from sklearn.metrics import mean_absolute_error as MAE | ||||||
| from sklearn.metrics import mean_squared_error as MSE | from sklearn.metrics import mean_squared_error as MSE | ||||||
|  | import pandas as pd | ||||||
|  | import seaborn as sns | ||||||
|  | from matplotlib import pyplot as plt | ||||||
|  |  | ||||||
| def prng(): | def prng(): | ||||||
|     return random.random() |     return random.random() | ||||||
| @@ -120,8 +123,8 @@ class SpawnExperiment: | |||||||
|         self.spawn_and_continue() |         self.spawn_and_continue() | ||||||
|         self.weights_evolution_3d_experiment() |         self.weights_evolution_3d_experiment() | ||||||
|         # self.visualize_loss() |         # self.visualize_loss() | ||||||
|         self.distance_matrix = distance_matrix(self.nets) |         self.distance_matrix = distance_matrix(self.nets, print_it=False) | ||||||
|         self.parent_clone_distances = distance_from_parent(self.nets) |         self.parent_clone_distances = distance_from_parent(self.nets, print_it=False) | ||||||
|  |  | ||||||
|         self.save() |         self.save() | ||||||
|  |  | ||||||
| @@ -136,13 +139,13 @@ class SpawnExperiment: | |||||||
|             for _ in range(self.ST_steps): |             for _ in range(self.ST_steps): | ||||||
|                 net.self_train(1, self.log_step_size, self.net_learning_rate) |                 net.self_train(1, self.log_step_size, self.net_learning_rate) | ||||||
|  |  | ||||||
|             # print(f"\nLast weight matrix (epoch: {self.epochs}):\n |  | ||||||
|             # {net.input_weight_matrix()}\nLossHistory: {net.loss_history[-10:]}") |  | ||||||
|             self.nets.append(net) |             self.nets.append(net) | ||||||
|  |  | ||||||
|     def spawn_and_continue(self, number_clones: int = None): |     def spawn_and_continue(self, number_clones: int = None): | ||||||
|         number_clones = number_clones or self.nr_clones |         number_clones = number_clones or self.nr_clones | ||||||
|  |  | ||||||
|  |         df = pd.DataFrame(columns=['parent', 'MAE_pre','MAE_post', 'MSE_pre', 'MSE_post', 'MIM_pre', 'MIM_post', 'noise', 'status_post']) | ||||||
|  |  | ||||||
|         # For every initial net {i} after populating (that is fixpoint after first epoch); |         # For every initial net {i} after populating (that is fixpoint after first epoch); | ||||||
|         for i in range(self.population_size): |         for i in range(self.population_size): | ||||||
|             net = self.nets[i] |             net = self.nets[i] | ||||||
| @@ -168,26 +171,46 @@ class SpawnExperiment: | |||||||
|                     clone = self.apply_noise(clone, rand_noise) |                     clone = self.apply_noise(clone, rand_noise) | ||||||
|                     clone.s_train_weights_history = copy.deepcopy(net.s_train_weights_history) |                     clone.s_train_weights_history = copy.deepcopy(net.s_train_weights_history) | ||||||
|                     clone.number_trained = copy.deepcopy(net.number_trained) |                     clone.number_trained = copy.deepcopy(net.number_trained) | ||||||
|  |                      | ||||||
|  |                     # Pre Training distances (after noise application of course) | ||||||
|  |                     clone_pre_weights = clone.create_target_weights(clone.input_weight_matrix()) | ||||||
|  |                     MAE_pre = MAE(net_target_data, clone_pre_weights) | ||||||
|  |                     MSE_pre = MSE(net_target_data, clone_pre_weights) | ||||||
|  |                     MIM_pre = mean_invariate_manhattan_distance(net_target_data, clone_pre_weights) | ||||||
|  |  | ||||||
|                     # Then finish training each clone {j} (for remaining epoch-1 * ST_steps) |                     # Then finish training each clone {j} (for remaining epoch-1 * ST_steps) .. | ||||||
|                     # and add to nets for plotting if they are fixpoints themselves; |  | ||||||
|                     for _ in range(self.epochs - 1): |                     for _ in range(self.epochs - 1): | ||||||
|                         for _ in range(self.ST_steps): |                         for _ in range(self.ST_steps): | ||||||
|                             clone.self_train(1, self.log_step_size, self.net_learning_rate) |                             clone.self_train(1, self.log_step_size, self.net_learning_rate) | ||||||
|  |                      | ||||||
|  |                     # Post Training distances for comparison | ||||||
|  |                     clone_post_weights = clone.create_target_weights(clone.input_weight_matrix()) | ||||||
|  |                     MAE_post = MAE(net_target_data, clone_post_weights) | ||||||
|  |                     MSE_post = MSE(net_target_data, clone_post_weights) | ||||||
|  |                     MIM_post = mean_invariate_manhattan_distance(net_target_data, clone_post_weights) | ||||||
|  |  | ||||||
|  |                     # .. log to data-frame and add to nets for 3d plotting if they are fixpoints themselves. | ||||||
|  |                     test_status(clone) | ||||||
|                     if is_identity_function(clone): |                     if is_identity_function(clone): | ||||||
|                         input_data = clone.input_weight_matrix() |                         print(f"Clone {j} (of net_{i}) is fixpoint."  | ||||||
|                         target_data = clone.create_target_weights(input_data) |                               f"\nMSE({i},{j}): {MSE_post}" | ||||||
|                         print(f"Clone {j} (of net_{i}) is fixpoint. \nMSE(j,i): " |                               f"\nMAE({i},{j}): {MAE_post}" | ||||||
|                               f"{MSE(net_target_data, target_data)}, \nMAE(j,i): {MAE(net_target_data, target_data)}\n") |                               f"\nMIM({i},{j}): {MIM_post}\n") | ||||||
|                     self.nets.append(clone) |                         self.nets.append(clone) | ||||||
|  |  | ||||||
|  |                     df.loc[clone.name] = [net.name, MAE_pre, MAE_post, MSE_pre, MSE_post, MIM_pre, MIM_post, self.noise, clone.is_fixpoint] | ||||||
|  |  | ||||||
|                 # Finally take parent net {i} and finish it's training for comparison to clone development. |                 # Finally take parent net {i} and finish it's training for comparison to clone development. | ||||||
|                 for _ in range(self.epochs - 1): |                 for _ in range(self.epochs - 1): | ||||||
|                     for _ in range(self.ST_steps): |                     for _ in range(self.ST_steps): | ||||||
|                         net.self_train(1, self.log_step_size, self.net_learning_rate) |                         net.self_train(1, self.log_step_size, self.net_learning_rate) | ||||||
|  |                 net_weights_after = net.create_target_weights(net.input_weight_matrix()) | ||||||
|  |                 print(f"Parent net's distance to original position."  | ||||||
|  |                               f"\nMSE(OG,new): {MAE(net_target_data, net_weights_after)}" | ||||||
|  |                               f"\nMAE(OG,new): {MSE(net_target_data, net_weights_after)}" | ||||||
|  |                               f"\nMIM(OG,new): {mean_invariate_manhattan_distance(net_target_data, net_weights_after)}\n") | ||||||
|  |  | ||||||
|         else: |         self.df = df | ||||||
|             print("No fixpoints found.") |  | ||||||
|  |  | ||||||
|     def weights_evolution_3d_experiment(self): |     def weights_evolution_3d_experiment(self): | ||||||
|         exp_name = f"ST_{str(len(self.nets))}_nets_3d_weights_PCA" |         exp_name = f"ST_{str(len(self.nets))}_nets_3d_weights_PCA" | ||||||
| @@ -217,15 +240,16 @@ if __name__ == "__main__": | |||||||
|     ST_log_step_size = 10 |     ST_log_step_size = 10 | ||||||
|  |  | ||||||
|     # Define number of networks & their architecture |     # Define number of networks & their architecture | ||||||
|     nr_clones = 10 |     nr_clones = 5 | ||||||
|     ST_population_size = 3 |     ST_population_size = 1 | ||||||
|     ST_net_hidden_size = 2 |     ST_net_hidden_size = 2 | ||||||
|     ST_net_learning_rate = 0.04 |     ST_net_learning_rate = 0.04 | ||||||
|     ST_name_hash = random.getrandbits(32) |     ST_name_hash = random.getrandbits(32) | ||||||
|  |  | ||||||
|     print(f"Running the Spawn experiment:") |     print(f"Running the Spawn experiment:") | ||||||
|     for noise_factor in [1]: |     exp_list = [] | ||||||
|         SpawnExperiment( |     for noise_factor in range(2,5): | ||||||
|  |         exp = SpawnExperiment( | ||||||
|             population_size=ST_population_size, |             population_size=ST_population_size, | ||||||
|             log_step_size=ST_log_step_size, |             log_step_size=ST_log_step_size, | ||||||
|             net_input_size=NET_INPUT_SIZE, |             net_input_size=NET_INPUT_SIZE, | ||||||
| @@ -236,5 +260,16 @@ if __name__ == "__main__": | |||||||
|             st_steps=ST_steps, |             st_steps=ST_steps, | ||||||
|             nr_clones=nr_clones, |             nr_clones=nr_clones, | ||||||
|             noise=pow(10, -noise_factor), |             noise=pow(10, -noise_factor), | ||||||
|             directory=Path('output') / 'spawn_basin' / f'{ST_name_hash}_10e-{noise_factor}' |             directory=Path('output') / 'spawn_basin' / f'{ST_name_hash}' / f'10e-{noise_factor}' | ||||||
|         ) |         ) | ||||||
|  |         exp_list.append(exp) | ||||||
|  |  | ||||||
|  |     # Boxplot with counts of nr_fixpoints, nr_other, nr_etc. on y-axis | ||||||
|  |     df = pd.concat([exp.df for exp in exp_list]) | ||||||
|  |     sns.countplot(data=df, x="noise", hue="status_post") | ||||||
|  |     plt.savefig(f"output/spawn_basin/{ST_name_hash}/fixpoint_status_countplot.png") | ||||||
|  |  | ||||||
|  |     # Catplot (either kind="point" or "box") that shows before-after training distances to parent | ||||||
|  |     mlt = df[["MIM_pre", "MIM_post", "noise"]].melt("noise", var_name="time", value_name='Average Distance') | ||||||
|  |     sns.catplot(data=mlt, x="time", y="Average Distance", col="noise", kind="point", col_wrap=5, sharey=False) | ||||||
|  |     plt.savefig(f"output/spawn_basin/{ST_name_hash}/clone_distance_catplot.png") | ||||||
		Reference in New Issue
	
	Block a user
	 Maximilian Zorn
					Maximilian Zorn