This commit is contained in:
Si11ium 2019-03-14 18:36:29 +01:00
parent fd215be5de
commit 252716c420
5 changed files with 7 additions and 7 deletions

View File

@ -36,7 +36,7 @@ if __name__ == '__main__':
net_generators = [] net_generators = []
for activation in ['linear', 'sigmoid', 'relu']: for activation in ['linear', 'sigmoid', 'relu']:
net_generators += [lambda activation=activation: WeightwiseNeuralNetwork(width=2, depth=2).with_keras_params(activation=activation, use_bias=False)] net_generators += [lambda activation=activation: WeightwiseNeuralNetwork(width=2, depth=2).with_keras_params(activation=activation, use_bias=False)]
net_generators += [lambda activation=activation: AggregatingNeuralNetwork(aggregates=4, width=2, depth=2).with_keras_params(activation=activation, use_bias=False)] # net_generators += [lambda activation=activation: AggregatingNeuralNetwork(aggregates=4, width=2, depth=2).with_keras_params(activation=activation, use_bias=False)]
# net_generators += [lambda activation=activation: FFTNeuralNetwork(aggregates=4, width=2, depth=2).with_keras_params(activation=activation, use_bias=False)] # net_generators += [lambda activation=activation: FFTNeuralNetwork(aggregates=4, width=2, depth=2).with_keras_params(activation=activation, use_bias=False)]
# net_generators += [lambda activation=activation: RecurrentNeuralNetwork(width=2, depth=2).with_keras_params(activation=activation, use_bias=False)] # net_generators += [lambda activation=activation: RecurrentNeuralNetwork(width=2, depth=2).with_keras_params(activation=activation, use_bias=False)]
all_counters = [] all_counters = []

View File

@ -61,15 +61,15 @@ def count(counters, soup, notable_nets=[]):
with SoupExperiment('learn-from-soup') as exp: with SoupExperiment('learn-from-soup') as exp:
exp.soup_size = 10 exp.soup_size = 10
exp.soup_life = 1000 exp.soup_life = 100
exp.trials = 20 exp.trials = 10
exp.learn_from_severity_values = [10 * i for i in range(11)] exp.learn_from_severity_values = [10 * i for i in range(11)]
exp.epsilon = 1e-4 exp.epsilon = 1e-4
net_generators = [] net_generators = []
for activation in ['sigmoid']: #['linear', 'sigmoid', 'relu']: for activation in ['sigmoid']: #['linear', 'sigmoid', 'relu']:
for use_bias in [False]: for use_bias in [False]:
net_generators += [lambda activation=activation, use_bias=use_bias: WeightwiseNeuralNetwork(width=2, depth=2).with_keras_params(activation=activation, use_bias=use_bias)] net_generators += [lambda activation=activation, use_bias=use_bias: WeightwiseNeuralNetwork(width=2, depth=2).with_keras_params(activation=activation, use_bias=use_bias)]
net_generators += [lambda activation=activation, use_bias=use_bias: AggregatingNeuralNetwork(aggregates=4, width=2, depth=2).with_keras_params(activation=activation, use_bias=use_bias)] # net_generators += [lambda activation=activation, use_bias=use_bias: AggregatingNeuralNetwork(aggregates=4, width=2, depth=2).with_keras_params(activation=activation, use_bias=use_bias)]
# net_generators += [lambda activation=activation, use_bias=use_bias: RecurrentNeuralNetwork(width=2, depth=2).with_keras_params(activation=activation, use_bias=use_bias)] # net_generators += [lambda activation=activation, use_bias=use_bias: RecurrentNeuralNetwork(width=2, depth=2).with_keras_params(activation=activation, use_bias=use_bias)]
all_names = [] all_names = []

View File

@ -61,7 +61,7 @@ if __name__ == '__main__':
for activation in ['linear']: # , 'sigmoid', 'relu']: for activation in ['linear']: # , 'sigmoid', 'relu']:
for use_bias in [False]: for use_bias in [False]:
net_generators += [lambda activation=activation, use_bias=use_bias: WeightwiseNeuralNetwork(width=2, depth=2).with_keras_params(activation=activation, use_bias=use_bias)] net_generators += [lambda activation=activation, use_bias=use_bias: WeightwiseNeuralNetwork(width=2, depth=2).with_keras_params(activation=activation, use_bias=use_bias)]
net_generators += [lambda activation=activation, use_bias=use_bias: AggregatingNeuralNetwork(aggregates=4, width=2, depth=2).with_keras_params(activation=activation, use_bias=use_bias)] # net_generators += [lambda activation=activation, use_bias=use_bias: AggregatingNeuralNetwork(aggregates=4, width=2, depth=2).with_keras_params(activation=activation, use_bias=use_bias)]
# net_generators += [lambda activation=activation, use_bias=use_bias: FFTNeuralNetwork(aggregates=4, width=2, depth=2).with_keras_params(activation=activation, use_bias=use_bias)] # net_generators += [lambda activation=activation, use_bias=use_bias: FFTNeuralNetwork(aggregates=4, width=2, depth=2).with_keras_params(activation=activation, use_bias=use_bias)]
# net_generators += [lambda activation=activation, use_bias=use_bias: RecurrentNeuralNetwork(width=2, depth=2).with_keras_params(activation=activation, use_bias=use_bias)] # net_generators += [lambda activation=activation, use_bias=use_bias: RecurrentNeuralNetwork(width=2, depth=2).with_keras_params(activation=activation, use_bias=use_bias)]

View File

@ -54,7 +54,7 @@ def count(counters, soup, notable_nets=[]):
with Experiment('mixed-self-fixpoints') as exp: with Experiment('mixed-self-fixpoints') as exp:
exp.trials = 100 exp.trials = 10
exp.soup_size = 10 exp.soup_size = 10
exp.soup_life = 5 exp.soup_life = 5
exp.trains_per_selfattack_values = [10 * i for i in range(11)] exp.trains_per_selfattack_values = [10 * i for i in range(11)]

View File

@ -40,7 +40,7 @@ if __name__ == '__main__':
for activation in ['linear']: # , 'sigmoid', 'relu']: for activation in ['linear']: # , 'sigmoid', 'relu']:
for use_bias in [False]: for use_bias in [False]:
net_generators += [lambda activation=activation, use_bias=use_bias: WeightwiseNeuralNetwork(width=2, depth=2).with_keras_params(activation=activation, use_bias=use_bias)] net_generators += [lambda activation=activation, use_bias=use_bias: WeightwiseNeuralNetwork(width=2, depth=2).with_keras_params(activation=activation, use_bias=use_bias)]
net_generators += [lambda activation=activation, use_bias=use_bias: AggregatingNeuralNetwork(aggregates=4, width=2, depth=2).with_keras_params(activation=activation, use_bias=use_bias)] # net_generators += [lambda activation=activation, use_bias=use_bias: AggregatingNeuralNetwork(aggregates=4, width=2, depth=2).with_keras_params(activation=activation, use_bias=use_bias)]
# net_generators += [lambda activation=activation, use_bias=use_bias: RecurrentNeuralNetwork(width=2, depth=2).with_keras_params(activation=activation, use_bias=use_bias)] # net_generators += [lambda activation=activation, use_bias=use_bias: RecurrentNeuralNetwork(width=2, depth=2).with_keras_params(activation=activation, use_bias=use_bias)]
all_counters = [] all_counters = []
all_notable_nets = [] all_notable_nets = []