journal linspace basins
This commit is contained in:
@@ -126,7 +126,8 @@ class RobustnessComparisonExperiment:
|
||||
# This checks wether to use synthetic setting with multiple seeds
|
||||
# or multi network settings with a singlee seed
|
||||
|
||||
df = pd.DataFrame(columns=['setting', 'noise_level', 'steps', 'absolute_loss', 'time_to_vergence', 'time_as_fixpoint'])
|
||||
df = pd.DataFrame(columns=['setting', 'Noise Level', 'steps', 'absolute_loss',
|
||||
'time_to_vergence', 'time_as_fixpoint'])
|
||||
with tqdm(total=max(len(self.id_functions), seeds)) as pbar:
|
||||
for i, fixpoint in enumerate(self.id_functions): # 1 / n
|
||||
row_headers.append(fixpoint.name)
|
||||
@@ -160,21 +161,22 @@ class RobustnessComparisonExperiment:
|
||||
# When this raises a Type Error, we found a second order fixpoint!
|
||||
steps += 1
|
||||
|
||||
df.loc[df.shape[0]] = [setting, noise_level, steps, absolute_loss,
|
||||
df.loc[df.shape[0]] = [setting, f'10e-{noise_level}', steps, absolute_loss,
|
||||
time_to_vergence[setting][noise_level],
|
||||
time_as_fixpoint[setting][noise_level]]
|
||||
pbar.update(1)
|
||||
|
||||
# Get the measuremts at the highest time_time_to_vergence
|
||||
df_sorted = df.sort_values('steps', ascending=False).drop_duplicates(['setting', 'noise_level'])
|
||||
df_melted = df_sorted.reset_index().melt(id_vars=['setting', 'noise_level', 'steps'],
|
||||
value_vars=['time_to_vergence', 'time_as_fixpoint'],
|
||||
df_sorted = df.sort_values('Steps', ascending=False).drop_duplicates(['setting', 'Noise Level'])
|
||||
df_melted = df_sorted.reset_index().melt(id_vars=['setting', 'Noise Level', 'Steps'],
|
||||
value_vars=['Time to vergence', 'Time as fixpoint'],
|
||||
var_name="Measurement",
|
||||
value_name="Steps")
|
||||
# Plotting
|
||||
sns.set(style='whitegrid')
|
||||
bf = sns.boxplot(data=df_melted, y='Steps', x='noise_level', hue='Measurement', palette=PALETTE)
|
||||
bf.set_title('Robustness as self application steps per noise level')
|
||||
sns.set(style='whitegrid', font_scale=2)
|
||||
bf = sns.boxplot(data=df_melted, y='Steps', x='Noise Level', hue='Measurement', palette=PALETTE)
|
||||
synthetic = 'synthetic' if self.is_synthetic else 'natural'
|
||||
bf.set_title(f'Robustness as self application steps per noise level for {synthetic} fixpoints.')
|
||||
plt.tight_layout()
|
||||
|
||||
# sns.set(rc={'figure.figsize': (10, 50)})
|
||||
@@ -221,9 +223,9 @@ if __name__ == "__main__":
|
||||
ST_steps = 1000
|
||||
ST_epochs = 5
|
||||
ST_log_step_size = 10
|
||||
ST_population_size = 100
|
||||
ST_population_size = 2
|
||||
ST_net_hidden_size = 2
|
||||
ST_net_learning_rate = 0.04
|
||||
ST_net_learning_rate = 0.004
|
||||
ST_name_hash = random.getrandbits(32)
|
||||
ST_synthetic = True
|
||||
|
||||
|
||||
Reference in New Issue
Block a user