|
|
|
@ -1,4 +1,6 @@
|
|
|
|
|
import os
|
|
|
|
|
from pathlib import Path
|
|
|
|
|
|
|
|
|
|
from tqdm import tqdm
|
|
|
|
|
import random
|
|
|
|
|
import copy
|
|
|
|
@ -14,16 +16,19 @@ from sklearn.metrics import mean_squared_error as MSE
|
|
|
|
|
def prng():
|
|
|
|
|
return random.random()
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
def l1(tup):
|
|
|
|
|
a, b = tup
|
|
|
|
|
return abs(a-b)
|
|
|
|
|
|
|
|
|
|
def mean_invariate_manhattan_distance(X,Y):
|
|
|
|
|
|
|
|
|
|
def mean_invariate_manhattan_distance(x, y):
|
|
|
|
|
# One of these one-liners that might be smart or really dumb. Goal is to find pairwise
|
|
|
|
|
# distances of ascending values, ie. sum (abs(min1_X-min1_Y), abs(min2_X-min2Y) ...) / mean.
|
|
|
|
|
# Idea was to find weight sets that have same values but just in different positions, that would
|
|
|
|
|
# make this distance 0.
|
|
|
|
|
return np.mean(list(map(l1, zip(sorted(X),sorted(Y)))))
|
|
|
|
|
return np.mean(list(map(l1, zip(sorted(x), sorted(y)))))
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
def distance_matrix(nets, distance="MIM", print_it=True):
|
|
|
|
|
matrix = [[0 for _ in range(len(nets))] for _ in range(len(nets))]
|
|
|
|
@ -43,6 +48,7 @@ def distance_matrix(nets, distance="MIM", print_it=True):
|
|
|
|
|
[print(row) for row in matrix]
|
|
|
|
|
return matrix
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
class SpawnExperiment:
|
|
|
|
|
|
|
|
|
|
@staticmethod
|
|
|
|
@ -61,7 +67,7 @@ class SpawnExperiment:
|
|
|
|
|
return network
|
|
|
|
|
|
|
|
|
|
def __init__(self, population_size, log_step_size, net_input_size, net_hidden_size, net_out_size, net_learning_rate,
|
|
|
|
|
epochs, ST_steps, noise, directory_name) -> None:
|
|
|
|
|
epochs, st_steps, noise, directory_name) -> None:
|
|
|
|
|
self.population_size = population_size
|
|
|
|
|
self.log_step_size = log_step_size
|
|
|
|
|
self.net_input_size = net_input_size
|
|
|
|
@ -69,14 +75,14 @@ class SpawnExperiment:
|
|
|
|
|
self.net_out_size = net_out_size
|
|
|
|
|
self.net_learning_rate = net_learning_rate
|
|
|
|
|
self.epochs = epochs
|
|
|
|
|
self.ST_steps = ST_steps
|
|
|
|
|
self.ST_steps = st_steps
|
|
|
|
|
self.loss_history = []
|
|
|
|
|
self.nets = []
|
|
|
|
|
self.noise = noise or 10e-5
|
|
|
|
|
print("\nNOISE:", self.noise)
|
|
|
|
|
|
|
|
|
|
self.directory_name = directory_name
|
|
|
|
|
os.mkdir(self.directory_name)
|
|
|
|
|
self.directory = Path(directory_name)
|
|
|
|
|
self.directory.mkdir(parents=True, exist_ok=True)
|
|
|
|
|
|
|
|
|
|
self.populate_environment()
|
|
|
|
|
self.spawn_and_continue()
|
|
|
|
@ -93,14 +99,12 @@ class SpawnExperiment:
|
|
|
|
|
net = Net(self.net_input_size, self.net_hidden_size, self.net_out_size, net_name)
|
|
|
|
|
|
|
|
|
|
for _ in range(self.ST_steps):
|
|
|
|
|
input_data = net.input_weight_matrix()
|
|
|
|
|
target_data = net.create_target_weights(input_data)
|
|
|
|
|
net.self_train(1, self.log_step_size, self.net_learning_rate, input_data, target_data)
|
|
|
|
|
net.self_train(1, self.log_step_size, self.net_learning_rate)
|
|
|
|
|
|
|
|
|
|
#print(f"\nLast weight matrix (epoch: {self.epochs}):\n{net.input_weight_matrix()}\nLossHistory: {net.loss_history[-10:]}")
|
|
|
|
|
# print(f"\nLast weight matrix (epoch: {self.epochs}):\n
|
|
|
|
|
# {net.input_weight_matrix()}\nLossHistory: {net.loss_history[-10:]}")
|
|
|
|
|
self.nets.append(net)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
def spawn_and_continue(self, number_spawns: int = 5):
|
|
|
|
|
# For every initial net {i} after populating (that is fixpoint after first epoch);
|
|
|
|
|
for i in range(self.population_size):
|
|
|
|
@ -108,35 +112,37 @@ class SpawnExperiment:
|
|
|
|
|
|
|
|
|
|
net_input_data = net.input_weight_matrix()
|
|
|
|
|
net_target_data = net.create_target_weights(net_input_data)
|
|
|
|
|
if is_identity_function(net, net_input_data, net_target_data):
|
|
|
|
|
if is_identity_function(net):
|
|
|
|
|
print(f"\nNet {i} is fixpoint")
|
|
|
|
|
# print("\nNet weights before training\n", target_data)
|
|
|
|
|
|
|
|
|
|
# Clone the fixpoint x times and add (+-)self.noise to weight-sets randomly;
|
|
|
|
|
# To plot clones starting after first epoch (z=ST_steps), set that as start_time!
|
|
|
|
|
for j in range(number_spawns):
|
|
|
|
|
clone = Net(net.input_size, net.hidden_size, net.out_size, f"ST_net_{str(i)}_clone_{str(j)}", start_time=self.ST_steps)
|
|
|
|
|
clone = Net(net.input_size, net.hidden_size, net.out_size,
|
|
|
|
|
f"ST_net_{str(i)}_clone_{str(j)}",
|
|
|
|
|
start_time=self.ST_steps)
|
|
|
|
|
clone.load_state_dict(copy.deepcopy(net.state_dict()))
|
|
|
|
|
rand_noise = prng() * self.noise
|
|
|
|
|
clone = self.apply_noise(clone, rand_noise)
|
|
|
|
|
|
|
|
|
|
# Then finish training each clone {j} (for remaining epoch-1 * ST_steps) and add to nets for plotting;
|
|
|
|
|
# Then finish training each clone {j} (for remaining epoch-1 * ST_steps)
|
|
|
|
|
# and add to nets for plotting;
|
|
|
|
|
for _ in range(self.epochs - 1):
|
|
|
|
|
for _ in range(self.ST_steps):
|
|
|
|
|
clone.self_train(1, self.log_step_size, self.net_learning_rate)
|
|
|
|
|
# print(f"clone {j} last weights: {target_data}, noise {noise}")
|
|
|
|
|
if is_identity_function(clone):
|
|
|
|
|
input_data = clone.input_weight_matrix()
|
|
|
|
|
target_data = clone.create_target_weights(input_data)
|
|
|
|
|
clone.self_train(1, self.log_step_size, self.net_learning_rate, input_data, target_data)
|
|
|
|
|
#print(f"clone {j} last weights: {target_data}, noise {noise}")
|
|
|
|
|
if is_identity_function(clone, input_data, target_data):
|
|
|
|
|
print(f"Clone {j} (of net_{i}) is fixpoint. \nMSE(j,i): {MSE(net_target_data, target_data)}, \nMAE(j,i): {MAE(net_target_data, target_data)}\n")
|
|
|
|
|
print(f"Clone {j} (of net_{i}) is fixpoint. \nMSE(j,i): "
|
|
|
|
|
f"{MSE(net_target_data, target_data)}, \nMAE(j,i): {MAE(net_target_data, target_data)}\n")
|
|
|
|
|
self.nets.append(clone)
|
|
|
|
|
|
|
|
|
|
# Finally take parent net {i} and finish it's training for comparison to clone development.
|
|
|
|
|
for _ in range(self.epochs - 1):
|
|
|
|
|
for _ in range(self.ST_steps):
|
|
|
|
|
input_data = net.input_weight_matrix()
|
|
|
|
|
target_data = net.create_target_weights(input_data)
|
|
|
|
|
net.self_train(1, self.log_step_size, self.net_learning_rate, input_data, target_data)
|
|
|
|
|
net.self_train(1, self.log_step_size, self.net_learning_rate)
|
|
|
|
|
# print("\nNet weights after training \n", target_data)
|
|
|
|
|
|
|
|
|
|
else:
|
|
|
|
@ -144,13 +150,14 @@ class SpawnExperiment:
|
|
|
|
|
|
|
|
|
|
def weights_evolution_3d_experiment(self):
|
|
|
|
|
exp_name = f"ST_{str(len(self.nets))}_nets_3d_weights_PCA"
|
|
|
|
|
return plot_3d_self_train(self.nets, exp_name, self.directory_name, self.log_step_size)
|
|
|
|
|
return plot_3d_self_train(self.nets, exp_name, self.directory.name, self.log_step_size)
|
|
|
|
|
|
|
|
|
|
def visualize_loss(self):
|
|
|
|
|
for i in range(len(self.nets)):
|
|
|
|
|
net_loss_history = self.nets[i].loss_history
|
|
|
|
|
self.loss_history.append(net_loss_history)
|
|
|
|
|
plot_loss(self.loss_history, self.directory_name)
|
|
|
|
|
plot_loss(self.loss_history, self.directory.name)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
if __name__ == "__main__":
|
|
|
|
|
|
|
|
|
@ -180,7 +187,7 @@ if __name__=="__main__":
|
|
|
|
|
net_out_size=NET_OUT_SIZE,
|
|
|
|
|
net_learning_rate=ST_net_learning_rate,
|
|
|
|
|
epochs=ST_epochs,
|
|
|
|
|
ST_steps=ST_steps,
|
|
|
|
|
st_steps=ST_steps,
|
|
|
|
|
noise=pow(10, -noise_factor),
|
|
|
|
|
directory_name=f"./experiments/spawn_basin/{ST_name_hash}_10e-{noise_factor}"
|
|
|
|
|
)
|
|
|
|
|