self-replicating-neural-net.../journal_basins.py
2021-05-16 11:30:34 +02:00

194 lines
7.8 KiB
Python

import os
from pathlib import Path
from tqdm import tqdm
import random
import copy
from functionalities_test import is_identity_function
from network import Net
from visualization import plot_3d_self_train, plot_loss
import numpy as np
from sklearn.metrics import mean_absolute_error as MAE
from sklearn.metrics import mean_squared_error as MSE
def prng():
return random.random()
def l1(tup):
a, b = tup
return abs(a-b)
def mean_invariate_manhattan_distance(x, y):
# One of these one-liners that might be smart or really dumb. Goal is to find pairwise
# distances of ascending values, ie. sum (abs(min1_X-min1_Y), abs(min2_X-min2Y) ...) / mean.
# Idea was to find weight sets that have same values but just in different positions, that would
# make this distance 0.
return np.mean(list(map(l1, zip(sorted(x), sorted(y)))))
def distance_matrix(nets, distance="MIM", print_it=True):
matrix = [[0 for _ in range(len(nets))] for _ in range(len(nets))]
for net in range(len(nets)):
weights = nets[net].input_weight_matrix()[:, 0]
for other_net in range(len(nets)):
other_weights = nets[other_net].input_weight_matrix()[:, 0]
if distance in ["MSE"]:
matrix[net][other_net] = MSE(weights, other_weights)
elif distance in ["MAE"]:
matrix[net][other_net] = MAE(weights, other_weights)
elif distance in ["MIM"]:
matrix[net][other_net] = mean_invariate_manhattan_distance(weights, other_weights)
if print_it:
print(f"\nDistance matrix [{distance}]:")
[print(row) for row in matrix]
return matrix
class SpawnExperiment:
@staticmethod
def apply_noise(network, noise: int):
""" Changing the weights of a network to values + noise """
for layer_id, layer_name in enumerate(network.state_dict()):
for line_id, line_values in enumerate(network.state_dict()[layer_name]):
for weight_id, weight_value in enumerate(network.state_dict()[layer_name][line_id]):
# network.state_dict()[layer_name][line_id][weight_id] = weight_value + noise
if prng() < 0.5:
network.state_dict()[layer_name][line_id][weight_id] = weight_value + noise
else:
network.state_dict()[layer_name][line_id][weight_id] = weight_value - noise
return network
def __init__(self, population_size, log_step_size, net_input_size, net_hidden_size, net_out_size, net_learning_rate,
epochs, st_steps, noise, directory_name) -> None:
self.population_size = population_size
self.log_step_size = log_step_size
self.net_input_size = net_input_size
self.net_hidden_size = net_hidden_size
self.net_out_size = net_out_size
self.net_learning_rate = net_learning_rate
self.epochs = epochs
self.ST_steps = st_steps
self.loss_history = []
self.nets = []
self.noise = noise or 10e-5
print("\nNOISE:", self.noise)
self.directory = Path(directory_name)
self.directory.mkdir(parents=True, exist_ok=True)
self.populate_environment()
self.spawn_and_continue()
self.weights_evolution_3d_experiment()
# self.visualize_loss()
distance_matrix(self.nets)
def populate_environment(self):
loop_population_size = tqdm(range(self.population_size))
for i in loop_population_size:
loop_population_size.set_description("Populating experiment %s" % i)
net_name = f"ST_net_{str(i)}"
net = Net(self.net_input_size, self.net_hidden_size, self.net_out_size, net_name)
for _ in range(self.ST_steps):
net.self_train(1, self.log_step_size, self.net_learning_rate)
# print(f"\nLast weight matrix (epoch: {self.epochs}):\n
# {net.input_weight_matrix()}\nLossHistory: {net.loss_history[-10:]}")
self.nets.append(net)
def spawn_and_continue(self, number_spawns: int = 5):
# For every initial net {i} after populating (that is fixpoint after first epoch);
for i in range(self.population_size):
net = self.nets[i]
net_input_data = net.input_weight_matrix()
net_target_data = net.create_target_weights(net_input_data)
if is_identity_function(net):
print(f"\nNet {i} is fixpoint")
# print("\nNet weights before training\n", target_data)
# Clone the fixpoint x times and add (+-)self.noise to weight-sets randomly;
# To plot clones starting after first epoch (z=ST_steps), set that as start_time!
for j in range(number_spawns):
clone = Net(net.input_size, net.hidden_size, net.out_size,
f"ST_net_{str(i)}_clone_{str(j)}",
start_time=self.ST_steps)
clone.load_state_dict(copy.deepcopy(net.state_dict()))
rand_noise = prng() * self.noise
clone = self.apply_noise(clone, rand_noise)
# Then finish training each clone {j} (for remaining epoch-1 * ST_steps)
# and add to nets for plotting;
for _ in range(self.epochs - 1):
for _ in range(self.ST_steps):
clone.self_train(1, self.log_step_size, self.net_learning_rate)
# print(f"clone {j} last weights: {target_data}, noise {noise}")
if is_identity_function(clone):
input_data = clone.input_weight_matrix()
target_data = clone.create_target_weights(input_data)
print(f"Clone {j} (of net_{i}) is fixpoint. \nMSE(j,i): "
f"{MSE(net_target_data, target_data)}, \nMAE(j,i): {MAE(net_target_data, target_data)}\n")
self.nets.append(clone)
# Finally take parent net {i} and finish it's training for comparison to clone development.
for _ in range(self.epochs - 1):
for _ in range(self.ST_steps):
net.self_train(1, self.log_step_size, self.net_learning_rate)
# print("\nNet weights after training \n", target_data)
else:
print("No fixpoints found.")
def weights_evolution_3d_experiment(self):
exp_name = f"ST_{str(len(self.nets))}_nets_3d_weights_PCA"
return plot_3d_self_train(self.nets, exp_name, self.directory.name, self.log_step_size)
def visualize_loss(self):
for i in range(len(self.nets)):
net_loss_history = self.nets[i].loss_history
self.loss_history.append(net_loss_history)
plot_loss(self.loss_history, self.directory.name)
if __name__ == "__main__":
NET_INPUT_SIZE = 4
NET_OUT_SIZE = 1
# Define number of runs & name:
ST_runs = 1
ST_runs_name = "test-27"
ST_steps = 1500
ST_epochs = 2
ST_log_step_size = 10
# Define number of networks & their architecture
ST_population_size = 1
ST_net_hidden_size = 2
ST_net_learning_rate = 0.04
ST_name_hash = random.getrandbits(32)
print(f"Running the Spawn experiment:")
for noise_factor in range(3, 6):
SpawnExperiment(
population_size=ST_population_size,
log_step_size=ST_log_step_size,
net_input_size=NET_INPUT_SIZE,
net_hidden_size=ST_net_hidden_size,
net_out_size=NET_OUT_SIZE,
net_learning_rate=ST_net_learning_rate,
epochs=ST_epochs,
st_steps=ST_steps,
noise=pow(10, -noise_factor),
directory_name=f"./experiments/spawn_basin/{ST_name_hash}_10e-{noise_factor}"
)