dataset modification
This commit is contained in:
@ -8,7 +8,6 @@ from collections import defaultdict
|
||||
import os
|
||||
from torch.utils.data import Dataset
|
||||
from tqdm import tqdm
|
||||
import glob
|
||||
|
||||
import torch
|
||||
from torch_geometric.data import InMemoryDataset
|
||||
@ -45,7 +44,9 @@ class CustomShapeNet(InMemoryDataset):
|
||||
assert mode in self.modes.keys(), f'"mode" must be one of {self.modes.keys()}'
|
||||
|
||||
# Set the Dataset Parameters
|
||||
self.collate_per_segment, self.mode, self.refresh = collate_per_segment, mode, refresh
|
||||
self.collate_per_segment = collate_per_segment
|
||||
self.mode = mode
|
||||
self.refresh = refresh
|
||||
self.with_normals = with_normals
|
||||
root_dir = Path(root_dir)
|
||||
super(CustomShapeNet, self).__init__(root_dir, transform, pre_transform, pre_filter)
|
||||
@ -57,15 +58,15 @@ class CustomShapeNet(InMemoryDataset):
|
||||
return [f'{self.mode}.pt']
|
||||
|
||||
def check_and_resolve_cloud_count(self):
|
||||
if self.raw_dir.exists():
|
||||
dir_count = len([name for name in os.listdir(self.raw_dir) if os.path.isdir(os.path.join(self.raw_dir, name))])
|
||||
if (self.raw_dir / self.mode).exists():
|
||||
file_count = len([cloud for cloud in (self.raw_dir / self.mode).iterdir() if cloud.is_file()])
|
||||
|
||||
if dir_count:
|
||||
print(f'{dir_count} folders have been found....')
|
||||
return dir_count
|
||||
if file_count:
|
||||
print(f'{file_count} files have been found....')
|
||||
return file_count
|
||||
else:
|
||||
warn(ResourceWarning("No raw pointclouds have been found. Was this intentional?"))
|
||||
return dir_count
|
||||
return file_count
|
||||
warn(ResourceWarning("The raw data folder does not exist. Was this intentional?"))
|
||||
return -1
|
||||
|
||||
@ -99,7 +100,7 @@ class CustomShapeNet(InMemoryDataset):
|
||||
continue
|
||||
return data, slices
|
||||
|
||||
def _transform_and_filter(self, data):
|
||||
def _pre_transform_and_filter(self, data):
|
||||
# ToDo: ANy filter to apply? Then do it here.
|
||||
if self.pre_filter is not None and not self.pre_filter(data):
|
||||
data = self.pre_filter(data)
|
||||
@ -133,7 +134,9 @@ class CustomShapeNet(InMemoryDataset):
|
||||
src[key] = torch.tensor(values, dtype=torch.double).squeeze()
|
||||
|
||||
if not self.collate_per_segment:
|
||||
src = dict(all=torch.stack([x for x in src.values()]))
|
||||
src = dict(
|
||||
all=torch.cat(tuple(src.values()))
|
||||
)
|
||||
|
||||
for key, values in src.items():
|
||||
try:
|
||||
@ -157,17 +160,18 @@ class CustomShapeNet(InMemoryDataset):
|
||||
if self.collate_per_segment:
|
||||
data = Data(**attr_dict)
|
||||
else:
|
||||
if not data:
|
||||
if data is None:
|
||||
data = defaultdict(list)
|
||||
# points=points, norm=points[:, 3:]
|
||||
for key, val in attr_dict.items():
|
||||
data[key].append(val)
|
||||
# data = Data(**data)
|
||||
|
||||
data = self._transform_and_filter(data)
|
||||
# data = self._pre_transform_and_filter(data)
|
||||
if self.collate_per_segment:
|
||||
datasets[self.mode].append(data)
|
||||
if not self.collate_per_segment:
|
||||
# Todo: What is this?
|
||||
# This is just to be sure, but should not be needed, since src[all] == all there is in this cloud
|
||||
datasets[self.mode].append(Data(**{key: torch.cat(data[key]) for key in data.keys()}))
|
||||
|
||||
if datasets[self.mode]:
|
||||
@ -198,8 +202,10 @@ class ShapeNetPartSegDataset(Dataset):
|
||||
|
||||
# Resample to fixed number of points
|
||||
try:
|
||||
npoints = self.npoints if self.mode != 'predict' else data.pos.shape[0]
|
||||
choice = np.random.choice(data.pos.shape[0], npoints, replace=False if self.mode == 'predict' else True)
|
||||
npoints = self.npoints if self.mode != DataSplit.predict else data.pos.shape[0]
|
||||
choice = np.random.choice(data.pos.shape[0], npoints,
|
||||
replace=False if self.mode == DataSplit.predict else True
|
||||
)
|
||||
except ValueError:
|
||||
choice = []
|
||||
|
||||
|
Reference in New Issue
Block a user