dataset modification

This commit is contained in:
Si11ium 2020-06-19 19:00:07 +02:00
parent b3c67bab40
commit a19bd9cafd
4 changed files with 36 additions and 20 deletions

View File

@ -8,7 +8,6 @@ from collections import defaultdict
import os
from torch.utils.data import Dataset
from tqdm import tqdm
import glob
import torch
from torch_geometric.data import InMemoryDataset
@ -45,7 +44,9 @@ class CustomShapeNet(InMemoryDataset):
assert mode in self.modes.keys(), f'"mode" must be one of {self.modes.keys()}'
# Set the Dataset Parameters
self.collate_per_segment, self.mode, self.refresh = collate_per_segment, mode, refresh
self.collate_per_segment = collate_per_segment
self.mode = mode
self.refresh = refresh
self.with_normals = with_normals
root_dir = Path(root_dir)
super(CustomShapeNet, self).__init__(root_dir, transform, pre_transform, pre_filter)
@ -57,15 +58,15 @@ class CustomShapeNet(InMemoryDataset):
return [f'{self.mode}.pt']
def check_and_resolve_cloud_count(self):
if self.raw_dir.exists():
dir_count = len([name for name in os.listdir(self.raw_dir) if os.path.isdir(os.path.join(self.raw_dir, name))])
if (self.raw_dir / self.mode).exists():
file_count = len([cloud for cloud in (self.raw_dir / self.mode).iterdir() if cloud.is_file()])
if dir_count:
print(f'{dir_count} folders have been found....')
return dir_count
if file_count:
print(f'{file_count} files have been found....')
return file_count
else:
warn(ResourceWarning("No raw pointclouds have been found. Was this intentional?"))
return dir_count
return file_count
warn(ResourceWarning("The raw data folder does not exist. Was this intentional?"))
return -1
@ -99,7 +100,7 @@ class CustomShapeNet(InMemoryDataset):
continue
return data, slices
def _transform_and_filter(self, data):
def _pre_transform_and_filter(self, data):
# ToDo: ANy filter to apply? Then do it here.
if self.pre_filter is not None and not self.pre_filter(data):
data = self.pre_filter(data)
@ -133,7 +134,9 @@ class CustomShapeNet(InMemoryDataset):
src[key] = torch.tensor(values, dtype=torch.double).squeeze()
if not self.collate_per_segment:
src = dict(all=torch.stack([x for x in src.values()]))
src = dict(
all=torch.cat(tuple(src.values()))
)
for key, values in src.items():
try:
@ -157,17 +160,18 @@ class CustomShapeNet(InMemoryDataset):
if self.collate_per_segment:
data = Data(**attr_dict)
else:
if not data:
if data is None:
data = defaultdict(list)
# points=points, norm=points[:, 3:]
for key, val in attr_dict.items():
data[key].append(val)
# data = Data(**data)
data = self._transform_and_filter(data)
# data = self._pre_transform_and_filter(data)
if self.collate_per_segment:
datasets[self.mode].append(data)
if not self.collate_per_segment:
# Todo: What is this?
# This is just to be sure, but should not be needed, since src[all] == all there is in this cloud
datasets[self.mode].append(Data(**{key: torch.cat(data[key]) for key in data.keys()}))
if datasets[self.mode]:
@ -198,8 +202,10 @@ class ShapeNetPartSegDataset(Dataset):
# Resample to fixed number of points
try:
npoints = self.npoints if self.mode != 'predict' else data.pos.shape[0]
choice = np.random.choice(data.pos.shape[0], npoints, replace=False if self.mode == 'predict' else True)
npoints = self.npoints if self.mode != DataSplit.predict else data.pos.shape[0]
choice = np.random.choice(data.pos.shape[0], npoints,
replace=False if self.mode == DataSplit.predict else True
)
except ValueError:
choice = []

View File

@ -57,7 +57,7 @@ def predict_prim_type(input_pc, model):
if __name__ == '__main__':
input_pc_path = Path('data') / 'pc' / 'pc.txt'
input_pc_path = Path('data') / 'pc' / 'test.xyz'
model_path = Path('output') / 'PN2' / 'PN_26512907a2de0664bfad2349a6bffee3' / 'version_0'
# config_filename = 'config.ini'
@ -66,15 +66,19 @@ if __name__ == '__main__':
loaded_model = restore_logger_and_model(model_path)
loaded_model.eval()
input_pc = read_pointcloud(input_pc_path, ' ', False)
#input_pc = read_pointcloud(input_pc_path, ' ', False)
input_pc = normalize_pointcloud(input_pc)
# input_pc = normalize_pointcloud(input_pc)
grid_clusters = cluster_cubes(input_pc, [1,1,1], 1024)
# TEST DATASET
test_dataset = ShapeNetPartSegDataset('data', mode=GlobalVar.data_split.predict, collate_per_segment=False,
npoints=1024, refresh=True)
grid_clusters = cluster_cubes(test_dataset[0], [3, 3, 3], max_points_per_cluster=1024)
ps.init()
for i,grid_cluster_pc in enumerate(grid_clusters):
for i, grid_cluster_pc in enumerate(grid_clusters):
print("Cluster pointcloud size: {}".format(grid_cluster_pc.shape[0]))

View File

@ -17,6 +17,7 @@ from pyod.models.loci import LOCI
from pyod.models.hbos import HBOS
from pyod.models.lscp import LSCP
from pyod.models.feature_bagging import FeatureBagging
from torch_geometric.data import Data
from utils.project_settings import Classes
@ -116,6 +117,10 @@ def cluster_cubes(data, cluster_dims, max_points_per_cluster=-1, min_points_per_
print("no need to cluster.")
return [farthest_point_sampling(data, max_points_per_cluster)]
if isinstance(data, Data):
import torch
data = torch.cat((data.pos, data.norm, data.y.double().unsqueeze(-1)), dim=-1).numpy()
max = data[:, :3].max(axis=0)
max += max * 0.01

View File

@ -43,6 +43,7 @@ class DataSplit(DataClass):
train = 'train'
devel = 'devel'
test = 'test'
predict = 'predict'
class GlobalVar(DataClass):