Normalization and transforms for batch_to_data class
This commit is contained in:
		| @@ -5,16 +5,17 @@ from torch_geometric.data import Data | ||||
|  | ||||
|  | ||||
| class BatchToData(object): | ||||
|     def __init__(self): | ||||
|     def __init__(self, transforms=None): | ||||
|         super(BatchToData, self).__init__() | ||||
|         self.transforms = transforms if transforms else lambda x: x | ||||
|  | ||||
|     def __call__(self, batch_x: torch.Tensor, batch_pos: torch.Tensor, | ||||
|     def __call__(self, batch_norm: torch.Tensor, batch_pos: torch.Tensor, | ||||
|                  batch_y_l: Union[torch.Tensor, None] = None, batch_y_c: Union[torch.Tensor, None] = None): | ||||
|         # Convert to torch_geometric.data.Data type | ||||
|         # data = data.transpose(1, 2).contiguous() | ||||
|         batch_size, num_points, _ = batch_x.shape  # (batch_size, num_points, 3) | ||||
|         batch_size, num_points, _ = batch_norm.shape  # (batch_size, num_points, 3) | ||||
|  | ||||
|         x = batch_x.reshape(batch_size * num_points, -1) | ||||
|         norm = batch_norm.reshape(batch_size * num_points, -1) | ||||
|         pos = batch_pos.reshape(batch_size * num_points, -1) | ||||
|         batch_y_l = batch_y_l.reshape(batch_size * num_points) if batch_y_l is not None else batch_y_l | ||||
|         batch_y_c = batch_y_c.reshape(batch_size * num_points) if batch_y_c is not None else batch_y_c | ||||
| @@ -24,5 +25,8 @@ class BatchToData(object): | ||||
|         batch = batch.view(-1) | ||||
|  | ||||
|         data = Data() | ||||
|         data.x, data.pos, data.batch, data.yl, data.yc = x, pos, batch, batch_y_l, batch_y_c | ||||
|         data.norm, data.pos, data.batch, data.yl, data.yc = norm, pos, batch, batch_y_l, batch_y_c | ||||
|  | ||||
|         data = self.transforms(data) | ||||
|  | ||||
|         return data | ||||
|   | ||||
		Reference in New Issue
	
	Block a user
	 Si11ium
					Si11ium