torchaudio testing

This commit is contained in:
Si11ium
2020-12-17 08:02:28 +01:00
parent c6fdaa24aa
commit 62d9eb6e8f
6 changed files with 264 additions and 55 deletions

View File

@ -1,3 +1,7 @@
from typing import Union
import torch
try:
import librosa
except ImportError: # pragma: no-cover
@ -10,9 +14,6 @@ except ImportError: # pragma: no-cover
' install it with `pip install scikit-learn`.')
import numpy as np
def scale_minmax(x, min_val=0.0, max_val=1.0):
x_std = (x - x.min()) / (x.max() - x.min())
x_scaled = x_std * (max_val - min_val) + min_val
@ -47,13 +48,12 @@ class MFCC(object):
class NormalizeLocal(object):
def __init__(self):
self.cache: np.ndarray
pass
def __repr__(self):
return f'{self.__class__.__name__}({self.__dict__})'
def __call__(self, x: np.ndarray):
def __call__(self, x: torch.Tensor):
mean = x.mean()
std = x.std() + 0.0001
@ -61,37 +61,47 @@ class NormalizeLocal(object):
# tensor = tensor.__sub__(mean).__div__(std)
# Numpy Version
x = (x - mean) / std
x[np.isnan(x)] = 0
x[np.isinf(x)] = 0
x[torch.isnan(x)] = 0
x[torch.isinf(x)] = 0
return x
class NormalizeMelband(object):
def __init__(self):
self.cache: np.ndarray
pass
def __repr__(self):
return f'{self.__class__.__name__}({self.__dict__})'
def __call__(self, x: np.ndarray):
def __call__(self, x: torch.Tensor):
mean = x.mean(-1).unsqueeze(-1)
std = x.std(-1).unsqueeze(-1)
x = x.__sub__(mean).__div__(std)
x[np.isnan(x)] = 0
x[np.isinf(x)] = 0
x[torch.isnan(x)] = 0
x[torch.isinf(x)] = 0
return x
class AudioToMel(object):
class LibrosaAudioToMel(object):
def __init__(self, amplitude_to_db=False, power_to_db=False, **mel_kwargs):
assert not all([amplitude_to_db, power_to_db]), "Choose amplitude_to_db or power_to_db, not both!"
# Mel kwargs are:
# sr
# n_mels
# n_fft
# hop_length
self.mel_kwargs = mel_kwargs
self.amplitude_to_db = amplitude_to_db
self.power_to_db = power_to_db
def __call__(self, y):
import numpy as np
mel = librosa.feature.melspectrogram(y, **self.mel_kwargs)
if self.amplitude_to_db:
mel = librosa.amplitude_to_db(mel, ref=np.max)
@ -111,6 +121,7 @@ class PowerToDB(object):
return f'{self.__class__.__name__}({self.__dict__})'
def __call__(self, x):
import numpy as np
if self.running_max is not None:
self.running_max = max(np.max(x), self.running_max)
return librosa.power_to_db(x, ref=self.running_max)
@ -137,11 +148,11 @@ class MelToImage(object):
def __call__(self, x):
# Source to Solution: https://stackoverflow.com/a/57204349
mels = np.log(x + 1e-9) # add small number to avoid log(0)
mels = torch.log(x + 1e-9) # add small number to avoid log(0)
# min-max scale to fit inside 8-bit range
img = scale_minmax(mels, 0, 255).astype(np.uint8)
img = np.flip(img, axis=0) # put low frequencies at the bottom in image
img = 255 - img # invert. make black==more energy
img = img.astype(np.float32)
img = scale_minmax(mels, 0, 255).int()
img = torch.flip(img, dims=(0,)) # put low frequencies at the bottom in image
img = torch.as_tensor(255) - img # invert. make black==more energy
img = img.float()
return img