eval running - offline logger implemented -> Test it!

This commit is contained in:
Si11ium
2020-05-30 18:12:41 +02:00
parent 77ea043907
commit 5987efb169
9 changed files with 626 additions and 17 deletions

24
point_toolset/point_io.py Normal file
View File

@@ -0,0 +1,24 @@
import torch
from torch_geometric.data import Data
class BatchToData(object):
def __init__(self):
super(BatchToData, self).__init__()
def __call__(self, batch_x: torch.Tensor, batch_pos: torch.Tensor, batch_y: torch.Tensor):
# Convert to torch_geometric.data.Data type
# data = data.transpose(1, 2).contiguous()
batch_size, num_points, _ = batch_x.shape # (batch_size, num_points, 3)
x = batch_x.reshape(batch_size * num_points, -1)
pos = batch_pos.reshape(batch_size * num_points, -1)
batch_y = batch_y.reshape(batch_size * num_points)
batch = torch.zeros((batch_size, num_points), device=pos.device, dtype=torch.long)
for i in range(batch_size):
batch[i] = i
batch = batch.view(-1)
data = Data()
data.x, data.pos, data.batch, data.y = x, pos, batch, batch_y
return data

View File

@@ -1,10 +1,36 @@
from abc import ABC
import numpy as np
class FarthestpointSampling():
class _Sampler(ABC):
def __init__(self, K):
def __init__(self, K, **kwargs):
self.k = K
self.kwargs = kwargs
def __call__(self, *args, **kwargs):
raise NotImplementedError
class RandomSampling(_Sampler):
def __init__(self, *args, **kwargs):
super(RandomSampling, self).__init__(*args, **kwargs)
def __call__(self, pts, *args, **kwargs):
if pts.shape[0] < self.k:
return pts
else:
rnd_indexs = np.random.choice(np.arange(pts.shape[0]), self.k, replace=False)
return rnd_indexs
class FarthestpointSampling(_Sampler):
def __init__(self, *args, **kwargs):
super(FarthestpointSampling, self).__init__(*args, **kwargs)
@staticmethod
def calc_distances(p0, points):
@@ -15,14 +41,15 @@ class FarthestpointSampling():
if pts.shape[0] < self.k:
return pts
farthest_pts = np.zeros((self.k, pts.shape[1]))
farthest_pts_idx = np.zeros(self.k, dtype=np.int)
farthest_pts[0] = pts[np.random.randint(len(pts))]
distances = self.calc_distances(farthest_pts[0], pts)
for i in range(1, self.k):
farthest_pts_idx[i] = np.argmax(distances)
farthest_pts[i] = pts[farthest_pts_idx[i]]
else:
farthest_pts = np.zeros((self.k, pts.shape[1]))
farthest_pts_idx = np.zeros(self.k, dtype=np.int)
farthest_pts[0] = pts[np.random.randint(len(pts))]
distances = self.calc_distances(farthest_pts[0], pts)
for i in range(1, self.k):
farthest_pts_idx[i] = np.argmax(distances)
farthest_pts[i] = pts[farthest_pts_idx[i]]
distances = np.minimum(distances, self.calc_distances(farthest_pts[i], pts))
distances = np.minimum(distances, self.calc_distances(farthest_pts[i], pts))
return farthest_pts_idx
return farthest_pts_idx