SubSpectral and Lightning 0.9 Update
This commit is contained in:
parent
6bc9447ce1
commit
5848b528f0
@ -7,10 +7,9 @@ import torch
|
||||
from pytorch_lightning import Trainer
|
||||
from pytorch_lightning.callbacks import ModelCheckpoint, EarlyStopping
|
||||
|
||||
from modules.utils import LightningBaseModule
|
||||
from utils.config import Config
|
||||
from utils.logging import Logger
|
||||
from utils.model_io import SavedLightningModels
|
||||
from ml_lib.modules.util import LightningBaseModule
|
||||
from ml_lib.utils.config import Config
|
||||
from ml_lib.utils.logging import Logger
|
||||
|
||||
warnings.filterwarnings('ignore', category=FutureWarning)
|
||||
warnings.filterwarnings('ignore', category=UserWarning)
|
||||
|
@ -1,6 +1,6 @@
|
||||
import warnings
|
||||
|
||||
from _templates.new_project.utils.project_config import Config
|
||||
from ml_lib._templates.new_project.utils.project_config import Config
|
||||
|
||||
warnings.filterwarnings('ignore', category=FutureWarning)
|
||||
warnings.filterwarnings('ignore', category=UserWarning)
|
||||
@ -8,7 +8,7 @@ warnings.filterwarnings('ignore', category=UserWarning)
|
||||
# Imports
|
||||
# =============================================================================
|
||||
|
||||
from _templates.new_project.main import run_lightning_loop, args
|
||||
from ml_lib._templates.new_project.main import run_lightning_loop, args
|
||||
|
||||
|
||||
if __name__ == '__main__':
|
||||
|
@ -11,13 +11,13 @@ from torch.utils.data import DataLoader
|
||||
from torchcontrib.optim import SWA
|
||||
from torchvision.transforms import Compose
|
||||
|
||||
from _templates.new_project.datasets.template_dataset import TemplateDataset
|
||||
from ml_lib._templates.new_project.datasets.template_dataset import TemplateDataset
|
||||
|
||||
from audio_toolset.audio_io import NormalizeLocal
|
||||
from modules.utils import LightningBaseModule
|
||||
from utils.transforms import ToTensor
|
||||
from ml_lib.audio_toolset.audio_io import NormalizeLocal
|
||||
from ml_lib.modules.util import LightningBaseModule
|
||||
from ml_lib.utils.transforms import ToTensor
|
||||
|
||||
from _templates.new_project.utils.project_config import GlobalVar as GlobalVars
|
||||
from ml_lib._templates.new_project.utils.project_config import GlobalVar as GlobalVars
|
||||
|
||||
|
||||
class BaseOptimizerMixin:
|
||||
|
@ -1,6 +1,6 @@
|
||||
from argparse import Namespace
|
||||
|
||||
from utils.config import Config
|
||||
from ml_lib.utils.config import Config
|
||||
|
||||
|
||||
class GlobalVar(Namespace):
|
||||
|
@ -1,488 +0,0 @@
|
||||
##########################
|
||||
# constants
|
||||
import argparse
|
||||
import contextlib
|
||||
import json
|
||||
from datetime import datetime
|
||||
from pathlib import Path
|
||||
from typing import Dict, Optional, Union, Any
|
||||
import numpy as np
|
||||
|
||||
import pandas as pd
|
||||
|
||||
import os
|
||||
|
||||
|
||||
# ToDo: Check this
|
||||
import shutil
|
||||
from imageio import imwrite
|
||||
from natsort import natsorted
|
||||
from pytorch_lightning.loggers import LightningLoggerBase
|
||||
from pytorch_lightning import _logger as log
|
||||
from test_tube.log import DDPExperiment
|
||||
|
||||
_ROOT = Path(os.path.abspath(__file__))
|
||||
|
||||
|
||||
# -----------------------------
|
||||
# Experiment object
|
||||
# -----------------------------
|
||||
class Experiment(object):
|
||||
|
||||
def __init__(self, save_dir=None, name='default', debug=False, version=None, autosave=False, description=None):
|
||||
"""
|
||||
A new Experiment object defaults to 'default' unless a specific name is provided
|
||||
If a known name is already provided, then the file version is changed
|
||||
:param name:
|
||||
:param debug:
|
||||
"""
|
||||
|
||||
# change where the save dir is if requested
|
||||
|
||||
if save_dir is not None:
|
||||
global _ROOT
|
||||
_ROOT = save_dir
|
||||
|
||||
self.save_dir = save_dir
|
||||
self.no_save_dir = save_dir is None
|
||||
self.metrics = []
|
||||
self.tags = {}
|
||||
self.name = name
|
||||
self.debug = debug
|
||||
self.version = version
|
||||
self.autosave = autosave
|
||||
self.description = description
|
||||
self.exp_hash = '{}_v{}'.format(self.name, version)
|
||||
self.created_at = str(datetime.utcnow())
|
||||
self.process = os.getpid()
|
||||
|
||||
# when debugging don't do anything else
|
||||
if debug:
|
||||
return
|
||||
|
||||
# update version hash if we need to increase version on our own
|
||||
# we will increase the previous version, so do it now so the hash
|
||||
# is accurate
|
||||
if version is None:
|
||||
old_version = self.__get_last_experiment_version()
|
||||
self.exp_hash = '{}_v{}'.format(self.name, old_version + 1)
|
||||
self.version = old_version + 1
|
||||
|
||||
# create a new log file
|
||||
self.__init_cache_file_if_needed()
|
||||
|
||||
# when we have a version, load it
|
||||
if self.version is not None:
|
||||
|
||||
# when no version and no file, create it
|
||||
if not os.path.exists(self.__get_log_name()):
|
||||
self.__create_exp_file(self.version)
|
||||
else:
|
||||
# otherwise load it
|
||||
self.__load()
|
||||
|
||||
else:
|
||||
# if no version given, increase the version to a new exp
|
||||
# create the file if not exists
|
||||
old_version = self.__get_last_experiment_version()
|
||||
self.version = old_version
|
||||
self.__create_exp_file(self.version + 1)
|
||||
|
||||
def get_meta_copy(self):
|
||||
"""
|
||||
Gets a meta-version only copy of this module
|
||||
:return:
|
||||
"""
|
||||
return DDPExperiment(self)
|
||||
|
||||
def on_exit(self):
|
||||
pass
|
||||
|
||||
def __clean_dir(self):
|
||||
files = os.listdir(self.save_dir)
|
||||
|
||||
for f in files:
|
||||
if str(self.process) in f:
|
||||
os.remove(os.path.join(self.save_dir, f))
|
||||
|
||||
def argparse(self, argparser):
|
||||
parsed = vars(argparser)
|
||||
to_add = {}
|
||||
|
||||
# don't store methods
|
||||
for k, v in parsed.items():
|
||||
if not callable(v):
|
||||
to_add[k] = v
|
||||
|
||||
self.tag(to_add)
|
||||
|
||||
def add_meta_from_hyperopt(self, hypo):
|
||||
"""
|
||||
Transfers meta data about all the params from the
|
||||
hyperoptimizer to the log
|
||||
:param hypo:
|
||||
:return:
|
||||
"""
|
||||
meta = hypo.get_current_trial_meta()
|
||||
for tag in meta:
|
||||
self.tag(tag)
|
||||
|
||||
# --------------------------------
|
||||
# FILE IO UTILS
|
||||
# --------------------------------
|
||||
def __init_cache_file_if_needed(self):
|
||||
"""
|
||||
Inits a file that we log historical experiments
|
||||
:return:
|
||||
"""
|
||||
try:
|
||||
exp_cache_file = self.get_data_path(self.name, self.version)
|
||||
if not os.path.isdir(exp_cache_file):
|
||||
os.makedirs(exp_cache_file, exist_ok=True)
|
||||
except FileExistsError:
|
||||
# file already exists (likely written by another exp. In this case disable the experiment
|
||||
self.debug = True
|
||||
|
||||
def __create_exp_file(self, version):
|
||||
"""
|
||||
Recreates the old file with this exp and version
|
||||
:param version:
|
||||
:return:
|
||||
"""
|
||||
|
||||
try:
|
||||
exp_cache_file = self.get_data_path(self.name, self.version)
|
||||
# if no exp, then make it
|
||||
path = exp_cache_file / 'meta.experiment'
|
||||
path.touch(exist_ok=True)
|
||||
|
||||
self.version = version
|
||||
|
||||
# make the directory for the experiment media assets name
|
||||
self.get_media_path(self.name, self.version).mkdir(parents=True, exist_ok=True)
|
||||
|
||||
except FileExistsError:
|
||||
# file already exists (likely written by another exp. In this case disable the experiment
|
||||
self.debug = True
|
||||
|
||||
def __get_last_experiment_version(self):
|
||||
|
||||
exp_cache_file = self.get_data_path(self.name, self.version).parent
|
||||
last_version = -1
|
||||
|
||||
version = natsorted([x.name for x in exp_cache_file.iterdir() if 'version_' in x.name])[-1]
|
||||
last_version = max(last_version, int(version.split('_')[1]))
|
||||
|
||||
return last_version
|
||||
|
||||
def __get_log_name(self):
|
||||
return self.get_data_path(self.name, self.version) / 'meta.experiment'
|
||||
|
||||
def tag(self, tag_dict):
|
||||
"""
|
||||
Adds a tag to the experiment.
|
||||
Tags are metadata for the exp.
|
||||
|
||||
>> e.tag({"model": "Convnet A"})
|
||||
|
||||
:param tag_dict:
|
||||
:type tag_dict: dict
|
||||
|
||||
:return:
|
||||
"""
|
||||
if self.debug:
|
||||
return
|
||||
|
||||
# parse tags
|
||||
for k, v in tag_dict.items():
|
||||
self.tags[k] = v
|
||||
|
||||
# save if needed
|
||||
if self.autosave:
|
||||
self.save()
|
||||
|
||||
def log(self, metrics_dict):
|
||||
"""
|
||||
Adds a json dict of metrics.
|
||||
|
||||
>> e.log({"loss": 23, "coeff_a": 0.2})
|
||||
|
||||
:param metrics_dict:
|
||||
|
||||
:return:
|
||||
"""
|
||||
if self.debug:
|
||||
return
|
||||
|
||||
new_metrics_dict = metrics_dict.copy()
|
||||
for k, v in metrics_dict.items():
|
||||
tmp_metrics_dict = new_metrics_dict.pop(k)
|
||||
new_metrics_dict.update(tmp_metrics_dict)
|
||||
|
||||
metrics_dict = new_metrics_dict
|
||||
|
||||
# timestamp
|
||||
if 'created_at' not in metrics_dict:
|
||||
metrics_dict['created_at'] = str(datetime.utcnow())
|
||||
|
||||
self.__convert_numpy_types(metrics_dict)
|
||||
|
||||
self.metrics.append(metrics_dict)
|
||||
|
||||
if self.autosave:
|
||||
self.save()
|
||||
|
||||
@staticmethod
|
||||
def __convert_numpy_types(metrics_dict):
|
||||
for k, v in metrics_dict.items():
|
||||
if v.__class__.__name__ == 'float32':
|
||||
metrics_dict[k] = float(v)
|
||||
|
||||
if v.__class__.__name__ == 'float64':
|
||||
metrics_dict[k] = float(v)
|
||||
|
||||
def save(self):
|
||||
"""
|
||||
Saves current experiment progress
|
||||
:return:
|
||||
"""
|
||||
if self.debug:
|
||||
return
|
||||
|
||||
# save images and replace the image array with the
|
||||
# file name
|
||||
self.__save_images(self.metrics)
|
||||
metrics_file_path = self.get_data_path(self.name, self.version) / 'metrics.csv'
|
||||
meta_tags_path = self.get_data_path(self.name, self.version) / 'meta_tags.csv'
|
||||
|
||||
obj = {
|
||||
'name': self.name,
|
||||
'version': self.version,
|
||||
'tags_path': meta_tags_path,
|
||||
'metrics_path': metrics_file_path,
|
||||
'autosave': self.autosave,
|
||||
'description': self.description,
|
||||
'created_at': self.created_at,
|
||||
'exp_hash': self.exp_hash
|
||||
}
|
||||
|
||||
# save the experiment meta file
|
||||
with atomic_write(self.__get_log_name()) as tmp_path:
|
||||
with open(tmp_path, 'w') as file:
|
||||
json.dump(obj, file, ensure_ascii=False)
|
||||
|
||||
# save the metatags file
|
||||
df = pd.DataFrame({'key': list(self.tags.keys()), 'value': list(self.tags.values())})
|
||||
with atomic_write(meta_tags_path) as tmp_path:
|
||||
df.to_csv(tmp_path, index=False)
|
||||
|
||||
# save the metrics data
|
||||
df = pd.DataFrame(self.metrics)
|
||||
with atomic_write(metrics_file_path) as tmp_path:
|
||||
df.to_csv(tmp_path, index=False)
|
||||
|
||||
def __save_images(self, metrics):
|
||||
"""
|
||||
Save tags that have a png_ prefix (as images)
|
||||
and replace the meta tag with the file name
|
||||
:param metrics:
|
||||
:return:
|
||||
"""
|
||||
# iterate all metrics and find keys with a specific prefix
|
||||
for i, metric in enumerate(metrics):
|
||||
for k, v in metric.items():
|
||||
# if the prefix is a png, save the image and replace the value with the path
|
||||
img_extension = None
|
||||
img_extension = 'png' if 'png_' in k else img_extension
|
||||
img_extension = 'jpg' if 'jpg' in k else img_extension
|
||||
img_extension = 'jpeg' if 'jpeg' in k else img_extension
|
||||
|
||||
if img_extension is not None:
|
||||
# determine the file name
|
||||
img_name = '_'.join(k.split('_')[1:])
|
||||
save_path = self.get_media_path(self.name, self.version)
|
||||
save_path = '{}/{}_{}.{}'.format(save_path, img_name, i, img_extension)
|
||||
|
||||
# save image to disk
|
||||
if type(metric[k]) is not str:
|
||||
imwrite(save_path, metric[k])
|
||||
|
||||
# replace the image in the metric with the file path
|
||||
metric[k] = save_path
|
||||
|
||||
def __load(self):
|
||||
# load .experiment file
|
||||
with open(self.__get_log_name(), 'r') as file:
|
||||
data = json.load(file)
|
||||
self.name = data['name']
|
||||
self.version = data['version']
|
||||
self.autosave = data['autosave']
|
||||
self.created_at = data['created_at']
|
||||
self.description = data['description']
|
||||
self.exp_hash = data['exp_hash']
|
||||
|
||||
# load .tags file
|
||||
meta_tags_path = self.get_data_path(self.name, self.version) / 'meta_tags.csv'
|
||||
df = pd.read_csv(meta_tags_path)
|
||||
self.tags_list = df.to_dict(orient='records')
|
||||
self.tags = {}
|
||||
for d in self.tags_list:
|
||||
k, v = d['key'], d['value']
|
||||
self.tags[k] = v
|
||||
|
||||
# load metrics
|
||||
metrics_file_path = self.get_data_path(self.name, self.version) / 'metrics.csv'
|
||||
try:
|
||||
df = pd.read_csv(metrics_file_path)
|
||||
self.metrics = df.to_dict(orient='records')
|
||||
|
||||
# remove nans and infs
|
||||
for metric in self.metrics:
|
||||
to_delete = []
|
||||
for k, v in metric.items():
|
||||
if np.isnan(v) or np.isinf(v):
|
||||
to_delete.append(k)
|
||||
for k in to_delete:
|
||||
del metric[k]
|
||||
|
||||
except Exception:
|
||||
# metrics was empty...
|
||||
self.metrics = []
|
||||
|
||||
def get_data_path(self, exp_name, exp_version):
|
||||
"""
|
||||
Returns the path to the local package cache
|
||||
:param exp_name:
|
||||
:param exp_version:
|
||||
:return:
|
||||
Path
|
||||
"""
|
||||
if self.no_save_dir:
|
||||
return _ROOT / 'local_experiment_data' / exp_name, f'version_{exp_version}'
|
||||
else:
|
||||
return _ROOT / exp_name / f'version_{exp_version}'
|
||||
|
||||
def get_media_path(self, exp_name, exp_version):
|
||||
"""
|
||||
Returns the path to the local package cache
|
||||
:param exp_version:
|
||||
:param exp_name:
|
||||
:return:
|
||||
"""
|
||||
|
||||
return self.get_data_path(exp_name, exp_version) / 'media'
|
||||
|
||||
# ----------------------------
|
||||
# OVERWRITES
|
||||
# ----------------------------
|
||||
def __str__(self):
|
||||
return 'Exp: {}, v: {}'.format(self.name, self.version)
|
||||
|
||||
def __hash__(self):
|
||||
return 'Exp: {}, v: {}'.format(self.name, self.version)
|
||||
|
||||
|
||||
@contextlib.contextmanager
|
||||
def atomic_write(dst_path):
|
||||
"""A context manager to simplify atomic writing.
|
||||
|
||||
Usage:
|
||||
>>> with atomic_write(dst_path) as tmp_path:
|
||||
>>> # write to tmp_path
|
||||
>>> # Here tmp_path renamed to dst_path, if no exception happened.
|
||||
"""
|
||||
tmp_path = dst_path / '.tmp'
|
||||
try:
|
||||
yield tmp_path
|
||||
except:
|
||||
if tmp_path.exists():
|
||||
tmp_path.unlink()
|
||||
raise
|
||||
else:
|
||||
# If everything is fine, move tmp file to the destination.
|
||||
shutil.move(tmp_path, str(dst_path))
|
||||
|
||||
|
||||
##########################
|
||||
class LocalLogger(LightningLoggerBase):
|
||||
|
||||
@property
|
||||
def name(self) -> str:
|
||||
return self._name
|
||||
|
||||
@property
|
||||
def experiment(self) -> Experiment:
|
||||
r"""
|
||||
|
||||
Actual TestTube object. To use TestTube features in your
|
||||
:class:`~pytorch_lightning.core.lightning.LightningModule` do the following.
|
||||
|
||||
Example::
|
||||
|
||||
self.logger.experiment.some_test_tube_function()
|
||||
|
||||
"""
|
||||
if self._experiment is not None:
|
||||
return self._experiment
|
||||
|
||||
self._experiment = Experiment(
|
||||
save_dir=self.save_dir,
|
||||
name=self._name,
|
||||
debug=self.debug,
|
||||
version=self.version,
|
||||
description=self.description
|
||||
)
|
||||
return self._experiment
|
||||
|
||||
def log_metrics(self, metrics: Dict[str, float], step: Optional[int] = None):
|
||||
pass
|
||||
|
||||
def log_hyperparams(self, params: argparse.Namespace):
|
||||
pass
|
||||
|
||||
@property
|
||||
def version(self) -> Union[int, str]:
|
||||
if self._version is None:
|
||||
self._version = self._get_next_version()
|
||||
return self._version
|
||||
|
||||
def _get_next_version(self):
|
||||
root_dir = self.save_dir / self.name
|
||||
|
||||
if not root_dir.is_dir():
|
||||
log.warning(f'Missing logger folder: {root_dir}')
|
||||
return 0
|
||||
|
||||
existing_versions = []
|
||||
for d in os.listdir(root_dir):
|
||||
if os.path.isdir(os.path.join(root_dir, d)) and d.startswith("version_"):
|
||||
existing_versions.append(int(d.split("_")[1]))
|
||||
|
||||
if len(existing_versions) == 0:
|
||||
return 0
|
||||
|
||||
return max(existing_versions) + 1
|
||||
|
||||
def __init__(self, save_dir: str, name: str = "default", description: Optional[str] = None,
|
||||
debug: bool = False, version: Optional[int] = None, **kwargs):
|
||||
super(LocalLogger, self).__init__(**kwargs)
|
||||
self.save_dir = Path(save_dir)
|
||||
self._name = name
|
||||
self.description = description
|
||||
self.debug = debug
|
||||
self._version = version
|
||||
self._experiment = None
|
||||
|
||||
# Test tube experiments are not pickleable, so we need to override a few
|
||||
# methods to get DDP working. See
|
||||
# https://docs.python.org/3/library/pickle.html#handling-stateful-objects
|
||||
# for more info.
|
||||
def __getstate__(self) -> Dict[Any, Any]:
|
||||
state = self.__dict__.copy()
|
||||
state["_experiment"] = self.experiment.get_meta_copy()
|
||||
return state
|
||||
|
||||
def __setstate__(self, state: Dict[Any, Any]):
|
||||
self._experiment = state["_experiment"].get_non_ddp_exp()
|
||||
del state["_experiment"]
|
||||
self.__dict__.update(state)
|
@ -130,8 +130,9 @@ class DeConvModule(ShapeMixin, nn.Module):
|
||||
def __init__(self, in_shape, conv_filters, conv_kernel, conv_stride=1, conv_padding=0,
|
||||
dropout: Union[int, float] = 0, autopad=0,
|
||||
activation: Union[None, nn.Module] = nn.ReLU, interpolation_scale=0,
|
||||
bias=True, norm=False):
|
||||
bias=True, norm=False, **kwargs):
|
||||
super(DeConvModule, self).__init__()
|
||||
warnings.warn(f'The following arguments have been ignored: \n {list(kwargs.keys())}')
|
||||
in_channels, height, width = in_shape[0], in_shape[1], in_shape[2]
|
||||
self.padding = conv_padding
|
||||
self.conv_kernel = conv_kernel
|
||||
|
@ -1,8 +1,10 @@
|
||||
import torch
|
||||
from torch import nn
|
||||
from torch.nn import ReLU
|
||||
|
||||
from torch_geometric.nn import PointConv, fps, radius, global_max_pool, knn_interpolate
|
||||
try:
|
||||
from torch_geometric.nn import PointConv, fps, radius, global_max_pool, knn_interpolate
|
||||
except ImportError:
|
||||
print('Install torch-geometric to use this package.')
|
||||
|
||||
|
||||
class SAModule(torch.nn.Module):
|
||||
|
@ -1,10 +1,77 @@
|
||||
#
|
||||
# Full Model Parts
|
||||
###################
|
||||
import torch
|
||||
from torch import nn
|
||||
from argparse import Namespace
|
||||
from typing import Union, List, Tuple
|
||||
|
||||
from .util import ShapeMixin
|
||||
import torch
|
||||
from abc import ABC
|
||||
from torch import nn
|
||||
from torch.utils.data import DataLoader
|
||||
|
||||
from .util import ShapeMixin, LightningBaseModule
|
||||
|
||||
|
||||
class AEBaseModule(LightningBaseModule, ABC):
|
||||
|
||||
def generate_random_image(self, dataloader: Union[None, str, DataLoader] = None,
|
||||
lat_min: Union[Tuple, List, None] = None,
|
||||
lat_max: Union[Tuple, List, None] = None):
|
||||
|
||||
assert bool(dataloader) ^ bool(lat_min and lat_max), 'Decide wether to give min, max or a dataloader, not both.'
|
||||
|
||||
min_max = self._find_min_max(dataloader) if dataloader else [None, None]
|
||||
# assert not any([x is None for x in min_max])
|
||||
lat_min = torch.as_tensor(lat_min or min_max[0])
|
||||
lat_max = lat_max or min_max[1]
|
||||
|
||||
random_z = torch.rand((1, self.lat_dim))
|
||||
random_z = random_z * (abs(lat_min) + lat_max) - abs(lat_min)
|
||||
|
||||
return self.decoder(random_z).squeeze()
|
||||
|
||||
def encode(self, x):
|
||||
if len(x.shape) == 3:
|
||||
x = x.unsqueeze(0)
|
||||
return self.encoder(x).squeeze()
|
||||
|
||||
def _find_min_max(self, dataloader):
|
||||
encodings = list()
|
||||
for batch in dataloader:
|
||||
encodings.append(self.encode(batch))
|
||||
encodings = torch.cat(encodings, dim=0)
|
||||
min_lat = encodings.min(dim=1)
|
||||
max_lat = encodings.max(dim=1)
|
||||
return min_lat, max_lat
|
||||
|
||||
def decode_lat_evenly(self, n: int,
|
||||
dataloader: Union[None, str, DataLoader] = None,
|
||||
lat_min: Union[Tuple, List, None] = None,
|
||||
lat_max: Union[Tuple, List, None] = None):
|
||||
assert bool(dataloader) ^ bool(lat_min and lat_max), 'Decide wether to give min, max or a dataloader, not both.'
|
||||
|
||||
min_max = self._find_min_max(dataloader) if dataloader else [None, None]
|
||||
|
||||
lat_min = lat_min or min_max[0]
|
||||
lat_max = lat_max or min_max[1]
|
||||
|
||||
random_latent_samples = torch.stack([torch.linspace(lat_min[i].item(), lat_max[i].item(), n)
|
||||
for i in range(self.params.lat_dim)], dim=-1).cpu().detach()
|
||||
return self.decode(random_latent_samples).cpu().detach()
|
||||
|
||||
def decode(self, z):
|
||||
if len(z.shape) == 1:
|
||||
z = z.unsqueeze(0)
|
||||
return self.decoder(z).squeeze()
|
||||
|
||||
def encode_and_restore(self, x):
|
||||
x = x.to(self.device)
|
||||
if len(x.shape) == 3:
|
||||
x = x.unsqueeze(0)
|
||||
z = self.encode(x)
|
||||
x_hat = self.decode(z)
|
||||
|
||||
return Namespace(main_out=x_hat.squeeze(), latent_out=z)
|
||||
|
||||
|
||||
class Generator(nn.Module):
|
||||
@ -16,9 +83,12 @@ class Generator(nn.Module):
|
||||
|
||||
# noinspection PyUnresolvedReferences
|
||||
def __init__(self, out_channels, re_shape, lat_dim, use_norm=False, use_bias=True, dropout: Union[int, float] = 0,
|
||||
filters: List[int] = None, activation=nn.ReLU):
|
||||
filters: List[int] = None, kernels: List[int] = None, activation=nn.ReLU, **kwargs):
|
||||
super(Generator, self).__init__()
|
||||
assert filters, '"Filters" has to be a list of int len 3'
|
||||
assert filters, '"Filters" has to be a list of int.'
|
||||
assert filters, '"Filters" has to be a list of int.'
|
||||
assert len(filters) == len(kernels), '"Filters" and "Kernels" has to be of same length.'
|
||||
|
||||
self.filters = filters
|
||||
self.activation = activation
|
||||
self.inner_activation = activation()
|
||||
@ -29,52 +99,35 @@ class Generator(nn.Module):
|
||||
# re_shape = (self.feature_mixed_dim // reduce(mul, re_shape[1:]), ) + tuple(re_shape[1:])
|
||||
|
||||
self.flat = Flatten(to=re_shape)
|
||||
self.de_conv_list = nn.ModuleList()
|
||||
|
||||
self.deconv1 = DeConvModule(re_shape, conv_filters=self.filters[0],
|
||||
conv_kernel=5,
|
||||
conv_padding=2,
|
||||
conv_stride=1,
|
||||
normalize=use_norm,
|
||||
activation=self.activation,
|
||||
interpolation_scale=2,
|
||||
dropout=self.dropout
|
||||
)
|
||||
last_shape = re_shape
|
||||
for conv_filter, conv_kernel in zip(filters, kernels):
|
||||
self.de_conv_list.append(DeConvModule(last_shape, conv_filters=self.filters[0],
|
||||
conv_kernel=conv_kernel,
|
||||
conv_padding=conv_kernel-2,
|
||||
conv_stride=conv_filter,
|
||||
normalize=use_norm,
|
||||
activation=self.activation,
|
||||
interpolation_scale=2,
|
||||
dropout=self.dropout
|
||||
)
|
||||
)
|
||||
last_shape = self.de_conv_list[-1].shape
|
||||
|
||||
self.deconv2 = DeConvModule(self.deconv1.shape, conv_filters=self.filters[1],
|
||||
conv_kernel=3,
|
||||
conv_padding=1,
|
||||
conv_stride=1,
|
||||
normalize=use_norm,
|
||||
activation=self.activation,
|
||||
interpolation_scale=2,
|
||||
dropout=self.dropout
|
||||
)
|
||||
|
||||
self.deconv3 = DeConvModule(self.deconv2.shape, conv_filters=self.filters[2],
|
||||
conv_kernel=3,
|
||||
conv_padding=1,
|
||||
conv_stride=1,
|
||||
normalize=use_norm,
|
||||
activation=self.activation,
|
||||
interpolation_scale=2,
|
||||
dropout=self.dropout
|
||||
)
|
||||
|
||||
self.deconv4 = DeConvModule(self.deconv3.shape, conv_filters=out_channels,
|
||||
conv_kernel=3,
|
||||
conv_padding=1,
|
||||
# normalize=norm,
|
||||
activation=self.out_activation
|
||||
)
|
||||
self.de_conv_out = DeConvModule(self.de_conv_list[-1].shape, conv_filters=out_channels, conv_kernel=3,
|
||||
conv_padding=1, activation=self.out_activation
|
||||
)
|
||||
|
||||
def forward(self, z):
|
||||
tensor = self.l1(z)
|
||||
tensor = self.inner_activation(tensor)
|
||||
tensor = self.flat(tensor)
|
||||
tensor = self.deconv1(tensor)
|
||||
tensor = self.deconv2(tensor)
|
||||
tensor = self.deconv3(tensor)
|
||||
tensor = self.deconv4(tensor)
|
||||
|
||||
for de_conv in self.de_conv_list:
|
||||
tensor = de_conv(tensor)
|
||||
|
||||
tensor = self.de_conv_out(tensor)
|
||||
return tensor
|
||||
|
||||
def size(self):
|
||||
@ -119,12 +172,14 @@ class BaseEncoder(ShapeMixin, nn.Module):
|
||||
# noinspection PyUnresolvedReferences
|
||||
def __init__(self, in_shape, lat_dim=256, use_bias=True, use_norm=False, dropout: Union[int, float] = 0,
|
||||
latent_activation: Union[nn.Module, None] = None, activation: nn.Module = nn.ELU,
|
||||
filters: List[int] = None):
|
||||
filters: List[int] = None, kernels: List[int] = None, **kwargs):
|
||||
super(BaseEncoder, self).__init__()
|
||||
assert filters, '"Filters" has to be a list of int len 3'
|
||||
assert filters, '"Filters" has to be a list of int'
|
||||
assert kernels, '"Kernels" has to be a list of int'
|
||||
assert len(kernels) == len(filters), 'Length of "Filters" and "Kernels" has to be same.'
|
||||
|
||||
# Optional Padding for odd image-sizes
|
||||
# Obsolet, already Done by autopadding module on incoming tensors
|
||||
# Obsolet, cdan be done by autopadding module on incoming tensors
|
||||
# in_shape = [x+1 if x % 2 != 0 and idx else x for idx, x in enumerate(in_shape)]
|
||||
|
||||
# Parameters
|
||||
@ -133,43 +188,29 @@ class BaseEncoder(ShapeMixin, nn.Module):
|
||||
self.use_bias = use_bias
|
||||
self.latent_activation = latent_activation() if latent_activation else None
|
||||
|
||||
self.conv_list = nn.ModuleList()
|
||||
|
||||
# Modules
|
||||
self.conv1 = ConvModule(self.in_shape, conv_filters=filters[0],
|
||||
conv_kernel=3,
|
||||
conv_padding=1,
|
||||
conv_stride=1,
|
||||
pooling_size=2,
|
||||
use_norm=use_norm,
|
||||
dropout=dropout,
|
||||
activation=activation
|
||||
)
|
||||
|
||||
self.conv2 = ConvModule(self.conv1.shape, conv_filters=filters[1],
|
||||
conv_kernel=3,
|
||||
conv_padding=1,
|
||||
conv_stride=1,
|
||||
pooling_size=2,
|
||||
use_norm=use_norm,
|
||||
dropout=dropout,
|
||||
activation=activation
|
||||
)
|
||||
|
||||
self.conv3 = ConvModule(self.conv2.shape, conv_filters=filters[2],
|
||||
conv_kernel=5,
|
||||
conv_padding=2,
|
||||
conv_stride=1,
|
||||
pooling_size=2,
|
||||
use_norm=use_norm,
|
||||
dropout=dropout,
|
||||
activation=activation
|
||||
)
|
||||
last_shape = self.in_shape
|
||||
for conv_filter, conv_kernel in zip(filters, kernels):
|
||||
self.conv_list.append(ConvModule(last_shape, conv_filters=conv_filter,
|
||||
conv_kernel=conv_kernel,
|
||||
conv_padding=conv_kernel-2,
|
||||
conv_stride=1,
|
||||
pooling_size=2,
|
||||
use_norm=use_norm,
|
||||
dropout=dropout,
|
||||
activation=activation
|
||||
)
|
||||
)
|
||||
last_shape = self.conv_list[-1].shape
|
||||
|
||||
self.flat = Flatten()
|
||||
|
||||
def forward(self, x):
|
||||
tensor = self.conv1(x)
|
||||
tensor = self.conv2(tensor)
|
||||
tensor = self.conv3(tensor)
|
||||
tensor = x
|
||||
for conv in self.conv_list:
|
||||
tensor = conv(tensor)
|
||||
tensor = self.flat(tensor)
|
||||
return tensor
|
||||
|
||||
|
@ -1,7 +1,10 @@
|
||||
from functools import reduce
|
||||
|
||||
from abc import ABC
|
||||
from pathlib import Path
|
||||
|
||||
import torch
|
||||
from operator import mul
|
||||
from torch import nn
|
||||
from torch import functional as F
|
||||
|
||||
@ -102,6 +105,14 @@ class ShapeMixin:
|
||||
else:
|
||||
return -1
|
||||
|
||||
@property
|
||||
def flat_shape(self):
|
||||
shape = self.shape
|
||||
try:
|
||||
return reduce(mul, shape)
|
||||
except TypeError:
|
||||
return shape
|
||||
|
||||
|
||||
class F_x(ShapeMixin, nn.Module):
|
||||
def __init__(self, in_shape):
|
||||
@ -175,7 +186,7 @@ class WeightInit:
|
||||
m.bias.data.fill_(0.01)
|
||||
|
||||
|
||||
class Filter(nn.Module):
|
||||
class Filter(nn.Module, ShapeMixin):
|
||||
|
||||
def __init__(self, in_shape, pos, dim=-1):
|
||||
super(Filter, self).__init__()
|
||||
@ -210,11 +221,15 @@ class AutoPadToShape(object):
|
||||
def __call__(self, x):
|
||||
if not torch.is_tensor(x):
|
||||
x = torch.as_tensor(x)
|
||||
if x.shape[1:] == self.shape:
|
||||
if x.shape[1:] == self.shape or x.shape == self.shape:
|
||||
return x
|
||||
embedding = torch.zeros((x.shape[0], *self.shape))
|
||||
embedding[:, :x.shape[1], :x.shape[2], :x.shape[3]] = x
|
||||
return embedding
|
||||
|
||||
for i in range(-1, -len(self.shape), -1):
|
||||
idx = [0] * len(x.shape)
|
||||
idx[i] = self.shape[i] - x.shape[i]
|
||||
idx = tuple(idx)
|
||||
x = torch.nn.functional.pad(x, idx)
|
||||
return x
|
||||
|
||||
def __repr__(self):
|
||||
return f'AutoPadTransform({self.shape})'
|
||||
@ -233,9 +248,9 @@ class Splitter(nn.Module):
|
||||
def __init__(self, in_shape, n, dim=-1):
|
||||
super(Splitter, self).__init__()
|
||||
|
||||
self.n = n
|
||||
self.dim = dim
|
||||
self.in_shape = in_shape
|
||||
self.n = n
|
||||
self.dim = dim if dim > 0 else len(self.in_shape) - abs(dim)
|
||||
|
||||
self.new_dim_size = (self.in_shape[self.dim] // self.n) + (1 if self.in_shape[self.dim] % self.n != 0 else 0)
|
||||
self._out_shape = tuple([x if self.dim != i else self.new_dim_size for i, x in enumerate(self.in_shape)])
|
||||
@ -243,22 +258,23 @@ class Splitter(nn.Module):
|
||||
self.autopad = AutoPadToShape(self._out_shape)
|
||||
|
||||
def forward(self, x: torch.Tensor):
|
||||
x = x.transpose(0, self.dim)
|
||||
dim = self.dim + 1 if len(self.in_shape) == (x.ndim -1) else self.dim
|
||||
x = x.transpose(0, dim)
|
||||
n_blocks = list()
|
||||
for block_idx in range(self.n):
|
||||
start = block_idx * self.new_dim_size
|
||||
end = (block_idx + 1) * self.new_dim_size
|
||||
block = self.autopad(x[:, :, start:end, :])
|
||||
|
||||
n_blocks.append(block.transpose(0, self.dim))
|
||||
block = x[start:end].transpose(0, dim)
|
||||
block = self.autopad(block)
|
||||
n_blocks.append(block)
|
||||
return n_blocks
|
||||
|
||||
|
||||
class Merger(nn.Module):
|
||||
class Merger(nn.Module, ShapeMixin):
|
||||
|
||||
@property
|
||||
def shape(self):
|
||||
y = self.forward([torch.randn(self.in_shape)])
|
||||
y = self.forward([torch.randn(self.in_shape) for _ in range(self.n)])
|
||||
return y.shape
|
||||
|
||||
def __init__(self, in_shape, n, dim=-1):
|
||||
|
@ -3,7 +3,8 @@ from pathlib import Path
|
||||
|
||||
from pytorch_lightning.loggers.base import LightningLoggerBase
|
||||
from pytorch_lightning.loggers.neptune import NeptuneLogger
|
||||
from pytorch_lightning.loggers.test_tube import TestTubeLogger
|
||||
# noinspection PyUnresolvedReferences
|
||||
from pytorch_lightning.loggers.csv_logs import CSVLogger
|
||||
|
||||
from .config import Config
|
||||
|
||||
@ -15,13 +16,13 @@ class Logger(LightningLoggerBase, ABC):
|
||||
@property
|
||||
def experiment(self):
|
||||
if self.debug:
|
||||
return self.testtubelogger.experiment
|
||||
return self.csvlogger.experiment
|
||||
else:
|
||||
return self.neptunelogger.experiment
|
||||
|
||||
@property
|
||||
def log_dir(self):
|
||||
return Path(self.testtubelogger.experiment.get_logdir()).parent
|
||||
return Path(self.csvlogger.experiment.log_dir)
|
||||
|
||||
@property
|
||||
def name(self):
|
||||
@ -64,55 +65,56 @@ class Logger(LightningLoggerBase, ABC):
|
||||
self.config.set('project', 'owner', 'testuser')
|
||||
self.config.set('project', 'name', 'test')
|
||||
self.config.set('project', 'neptune_key', 'XXX')
|
||||
self._testtube_kwargs = dict(save_dir=self.outpath, version=self.version, name=self.name)
|
||||
self._csvlogger_kwargs = dict(save_dir=self.outpath, version=self.version, name=self.name)
|
||||
self._neptune_kwargs = dict(offline_mode=self.debug,
|
||||
api_key=self.config.project.neptune_key,
|
||||
experiment_name=self.name,
|
||||
project_name=self.project_name,
|
||||
params=self.config.model_paramters)
|
||||
self.neptunelogger = NeptuneLogger(**self._neptune_kwargs)
|
||||
self.testtubelogger = TestTubeLogger(**self._testtube_kwargs)
|
||||
self.csvlogger = CSVLogger(**self._csvlogger_kwargs)
|
||||
self.log_config_as_ini()
|
||||
|
||||
def log_hyperparams(self, params):
|
||||
self.neptunelogger.log_hyperparams(params)
|
||||
self.testtubelogger.log_hyperparams(params)
|
||||
self.csvlogger.log_hyperparams(params)
|
||||
pass
|
||||
|
||||
def log_metrics(self, metrics, step=None):
|
||||
self.neptunelogger.log_metrics(metrics, step=step)
|
||||
self.testtubelogger.log_metrics(metrics, step=step)
|
||||
self.csvlogger.log_metrics(metrics, step=step)
|
||||
pass
|
||||
|
||||
def close(self):
|
||||
self.testtubelogger.close()
|
||||
self.csvlogger.close()
|
||||
self.neptunelogger.close()
|
||||
|
||||
def log_config_as_ini(self):
|
||||
self.config.write(self.log_dir / 'config.ini')
|
||||
|
||||
def log_text(self, name, text, step_nb=0, **kwargs):
|
||||
def log_text(self, name, text, step_nb=0, **_):
|
||||
# TODO Implement Offline variant.
|
||||
self.neptunelogger.log_text(name, text, step_nb)
|
||||
|
||||
def log_metric(self, metric_name, metric_value, **kwargs):
|
||||
self.testtubelogger.log_metrics(dict(metric_name=metric_value))
|
||||
self.csvlogger.log_metrics(dict(metric_name=metric_value))
|
||||
self.neptunelogger.log_metric(metric_name, metric_value, **kwargs)
|
||||
|
||||
def log_image(self, name, image, ext='png', **kwargs):
|
||||
self.neptunelogger.log_image(name, image, **kwargs)
|
||||
|
||||
step = kwargs.get('step', None)
|
||||
name = f'{step}_{name}' if step is not None else name
|
||||
name = f'{name}.{ext[1:] if ext.startswith(".") else ext}'
|
||||
image_name = f'{step}_{name}' if step is not None else name
|
||||
image_path = self.log_dir / self.media_dir / f'{image_name}.{ext[1:] if ext.startswith(".") else ext}'
|
||||
(self.log_dir / self.media_dir).mkdir(parents=True, exist_ok=True)
|
||||
image.savefig(self.log_dir / self.media_dir / name)
|
||||
image.savefig(image_path, bbox_inches='tight', pad_inches=0)
|
||||
self.neptunelogger.log_image(name, str(image_path), **kwargs)
|
||||
|
||||
def save(self):
|
||||
self.testtubelogger.save()
|
||||
self.csvlogger.save()
|
||||
self.neptunelogger.save()
|
||||
|
||||
def finalize(self, status):
|
||||
self.testtubelogger.finalize(status)
|
||||
self.csvlogger.finalize(status)
|
||||
self.neptunelogger.finalize(status)
|
||||
|
||||
def __enter__(self):
|
||||
|
@ -20,7 +20,7 @@ class ModelParameters(Namespace, Mapping):
|
||||
|
||||
paramter_mapping.update(
|
||||
dict(
|
||||
activation=self._activations[self['activation']]
|
||||
activation=self.__getattribute__('activation')
|
||||
)
|
||||
)
|
||||
|
||||
@ -44,7 +44,7 @@ class ModelParameters(Namespace, Mapping):
|
||||
|
||||
def __getattribute__(self, name):
|
||||
if name == 'activation':
|
||||
return self._activations[self['activation']]
|
||||
return self._activations[self['activation'].lower()]
|
||||
else:
|
||||
try:
|
||||
return super(ModelParameters, self).__getattribute__(name)
|
||||
@ -56,6 +56,7 @@ class ModelParameters(Namespace, Mapping):
|
||||
|
||||
_activations = dict(
|
||||
leaky_relu=nn.LeakyReLU,
|
||||
elu=nn.ELU,
|
||||
relu=nn.ReLU,
|
||||
sigmoid=nn.Sigmoid,
|
||||
tanh=nn.Tanh
|
||||
|
@ -1,5 +1,5 @@
|
||||
try:
|
||||
import matplotlib.pyplot as plt
|
||||
from matplotlib.backends.backend_agg import FigureCanvasAgg as FigureCanvas
|
||||
except ImportError: # pragma: no-cover
|
||||
raise ImportError('You want to use `matplotlib` plugins which are not installed yet,' # pragma: no-cover
|
||||
' install it with `pip install matplotlib`.')
|
||||
@ -8,30 +8,23 @@ from pathlib import Path
|
||||
|
||||
|
||||
class Plotter(object):
|
||||
|
||||
def __init__(self, root_path=''):
|
||||
if not root_path:
|
||||
self.root_path = Path(root_path)
|
||||
|
||||
def save_current_figure(self, filename: str, extention='.png', naked=False):
|
||||
fig, _ = plt.gcf(), plt.gca()
|
||||
def save_figure(self, figure, title, extention='.png', naked=False):
|
||||
canvas = FigureCanvas(figure)
|
||||
# Prepare save location and check img file extention
|
||||
path = self.root_path / Path(filename if filename.endswith(extention) else f'{filename}{extention}')
|
||||
path = self.root_path / f'{title}{extention}'
|
||||
path.parent.mkdir(exist_ok=True, parents=True)
|
||||
if naked:
|
||||
plt.axis('off')
|
||||
fig.savefig(path, bbox_inches='tight', transparent=True, pad_inches=0)
|
||||
fig.clf()
|
||||
figure.axis('off)')
|
||||
figure.savefig(path, bbox_inches='tight', transparent=True, pad_inches=0)
|
||||
canvas.print_figure(path)
|
||||
else:
|
||||
fig.savefig(path)
|
||||
fig.clf()
|
||||
|
||||
def show_current_figure(self):
|
||||
fig, _ = plt.gcf(), plt.gca()
|
||||
fig.show()
|
||||
fig.clf()
|
||||
canvas.print_figure(path)
|
||||
|
||||
|
||||
if __name__ == '__main__':
|
||||
output_root = Path('..') / 'output'
|
||||
p = Plotter(output_root)
|
||||
p.save_current_figure('test.png')
|
||||
raise PermissionError('Get out of here.')
|
||||
|
Loading…
x
Reference in New Issue
Block a user