Bias renamed and Model IO / Config module parameters

This commit is contained in:
Si11ium 2020-04-27 17:31:29 +02:00
parent 8497857a57
commit 3e75d73a6b
6 changed files with 35 additions and 14 deletions

View File

@ -15,10 +15,10 @@ if __name__ == '__main__':
# Model Settings
config = Config().read_namespace(args)
# use_bias, activation, model, use_norm, max_epochs, filters
# bias, activation, model, norm, max_epochs, filters
cnn_classifier = dict(train_epochs=10, model_use_bias=True, model_use_norm=True, model_activation='leaky_relu',
model_type='classifier_cnn', model_filters=[16, 32, 64], data_batchsize=512)
# use_bias, activation, model, use_norm, max_epochs, sr, feature_mixed_dim, filters
# bias, activation, model, norm, max_epochs, sr, feature_mixed_dim, filters
for arg_dict in [cnn_classifier]:
for seed in range(5):

View File

@ -19,7 +19,7 @@ class ConvModule(nn.Module):
return output.shape[1:]
def __init__(self, in_shape, conv_filters, conv_kernel, activation: nn.Module = nn.ELU, pooling_size=None,
use_bias=True, use_norm=False, dropout: Union[int, float] = 0,
bias=True, norm=False, dropout: Union[int, float] = 0,
conv_class=nn.Conv2d, conv_stride=1, conv_padding=0, **kwargs):
super(ConvModule, self).__init__()
warnings.warn(f'The following arguments have been ignored: \n {list(kwargs.keys())}')
@ -37,14 +37,13 @@ class ConvModule(nn.Module):
# Modules
self.dropout = nn.Dropout2d(dropout) if dropout else lambda x: x
self.pooling = nn.MaxPool2d(pooling_size) if pooling_size else lambda x: x
self.norm = nn.BatchNorm2d(in_channels, eps=1e-04) if use_norm else lambda x: x
self.conv = conv_class(in_channels, self.conv_filters, self.conv_kernel, bias=use_bias,
self.norm = nn.BatchNorm2d(in_channels, eps=1e-04) if norm else lambda x: x
self.conv = conv_class(in_channels, self.conv_filters, self.conv_kernel, bias=bias,
padding=self.padding, stride=self.stride
)
def forward(self, x):
x = self.norm(x)
tensor = self.conv(x)
tensor = self.dropout(tensor)
tensor = self.pooling(tensor)
@ -63,7 +62,7 @@ class DeConvModule(nn.Module):
def __init__(self, in_shape, conv_filters, conv_kernel, conv_stride=1, conv_padding=0,
dropout: Union[int, float] = 0, autopad=0,
activation: Union[None, nn.Module] = nn.ReLU, interpolation_scale=0,
use_bias=True, use_norm=False):
bias=True, norm=False):
super(DeConvModule, self).__init__()
in_channels, height, width = in_shape[0], in_shape[1], in_shape[2]
self.padding = conv_padding
@ -74,9 +73,9 @@ class DeConvModule(nn.Module):
self.autopad = AutoPad() if autopad else lambda x: x
self.interpolation = Interpolate(scale_factor=interpolation_scale) if interpolation_scale else lambda x: x
self.norm = nn.BatchNorm2d(in_channels, eps=1e-04) if use_norm else lambda x: x
self.norm = nn.BatchNorm2d(in_channels, eps=1e-04) if norm else lambda x: x
self.dropout = nn.Dropout2d(dropout) if dropout else lambda x: x
self.de_conv = nn.ConvTranspose2d(in_channels, self.conv_filters, self.conv_kernel, bias=use_bias,
self.de_conv = nn.ConvTranspose2d(in_channels, self.conv_filters, self.conv_kernel, bias=bias,
padding=self.padding, stride=self.stride)
self.activation = activation() if activation else lambda x: x
@ -127,16 +126,16 @@ class RecurrentModule(nn.Module):
output = self(x)
return output.shape[1:]
def __init__(self, in_shape, hidden_size, num_layers=1, cell_type=nn.GRU, use_bias=True, dropout=0):
def __init__(self, in_shape, hidden_size, num_layers=1, cell_type=nn.GRU, bias=True, dropout=0):
super(RecurrentModule, self).__init__()
self.use_bias = use_bias
self.bias = bias
self.num_layers = num_layers
self.in_shape = in_shape
self.hidden_size = hidden_size
self.dropout = dropout
self.rnn = cell_type(self.in_shape[-1] * self.in_shape[-2], hidden_size,
num_layers=num_layers,
bias=self.use_bias,
bias=self.bias,
batch_first=True,
dropout=self.dropout)

View File

@ -61,7 +61,7 @@ class Generator(nn.Module):
self.deconv4 = DeConvModule(self.deconv3.shape, conv_filters=out_channels,
conv_kernel=3,
conv_padding=1,
# normalize=use_norm,
# normalize=norm,
activation=self.out_activation
)

View File

@ -1,3 +1,5 @@
from copy import deepcopy
from abc import ABC
from pathlib import Path
@ -109,7 +111,7 @@ class LightningBaseModule(pl.LightningModule, ABC):
def __init__(self, hparams):
super(LightningBaseModule, self).__init__()
self.hparams = hparams
self.hparams = deepcopy(hparams)
# Data loading
# =============================================================================

View File

@ -66,6 +66,7 @@ class Config(ConfigParser, ABC):
@property
def project(self):
return self._get_namespace_for_section('project')
###################################################
@property

View File

@ -10,6 +10,21 @@ from torch import nn
# Hyperparamter Object
class ModelParameters(Mapping, Namespace):
@property
def module_paramters(self):
paramter_mapping = dict()
paramter_mapping.update(self.model_param.__dict__)
paramter_mapping.update(
dict(
activation=self._activations[paramter_mapping['activation']]
)
)
del paramter_mapping['in_shape']
return paramter_mapping
def __getitem__(self, k):
# k: _KT -> _VT_co
return self.__dict__[k]
@ -22,6 +37,10 @@ class ModelParameters(Mapping, Namespace):
# -> Iterator[_T_co]
return iter(list(self.__dict__.keys()))
def __delitem__(self, key):
self.__dict__.__delitem__(key)
return True
_activations = dict(
leaky_relu=nn.LeakyReLU,
relu=nn.ReLU,