Bias renamed and Model IO / Config module parameters
This commit is contained in:
parent
8497857a57
commit
3e75d73a6b
@ -15,10 +15,10 @@ if __name__ == '__main__':
|
||||
|
||||
# Model Settings
|
||||
config = Config().read_namespace(args)
|
||||
# use_bias, activation, model, use_norm, max_epochs, filters
|
||||
# bias, activation, model, norm, max_epochs, filters
|
||||
cnn_classifier = dict(train_epochs=10, model_use_bias=True, model_use_norm=True, model_activation='leaky_relu',
|
||||
model_type='classifier_cnn', model_filters=[16, 32, 64], data_batchsize=512)
|
||||
# use_bias, activation, model, use_norm, max_epochs, sr, feature_mixed_dim, filters
|
||||
# bias, activation, model, norm, max_epochs, sr, feature_mixed_dim, filters
|
||||
|
||||
for arg_dict in [cnn_classifier]:
|
||||
for seed in range(5):
|
||||
|
@ -19,7 +19,7 @@ class ConvModule(nn.Module):
|
||||
return output.shape[1:]
|
||||
|
||||
def __init__(self, in_shape, conv_filters, conv_kernel, activation: nn.Module = nn.ELU, pooling_size=None,
|
||||
use_bias=True, use_norm=False, dropout: Union[int, float] = 0,
|
||||
bias=True, norm=False, dropout: Union[int, float] = 0,
|
||||
conv_class=nn.Conv2d, conv_stride=1, conv_padding=0, **kwargs):
|
||||
super(ConvModule, self).__init__()
|
||||
warnings.warn(f'The following arguments have been ignored: \n {list(kwargs.keys())}')
|
||||
@ -37,14 +37,13 @@ class ConvModule(nn.Module):
|
||||
# Modules
|
||||
self.dropout = nn.Dropout2d(dropout) if dropout else lambda x: x
|
||||
self.pooling = nn.MaxPool2d(pooling_size) if pooling_size else lambda x: x
|
||||
self.norm = nn.BatchNorm2d(in_channels, eps=1e-04) if use_norm else lambda x: x
|
||||
self.conv = conv_class(in_channels, self.conv_filters, self.conv_kernel, bias=use_bias,
|
||||
self.norm = nn.BatchNorm2d(in_channels, eps=1e-04) if norm else lambda x: x
|
||||
self.conv = conv_class(in_channels, self.conv_filters, self.conv_kernel, bias=bias,
|
||||
padding=self.padding, stride=self.stride
|
||||
)
|
||||
|
||||
def forward(self, x):
|
||||
x = self.norm(x)
|
||||
|
||||
tensor = self.conv(x)
|
||||
tensor = self.dropout(tensor)
|
||||
tensor = self.pooling(tensor)
|
||||
@ -63,7 +62,7 @@ class DeConvModule(nn.Module):
|
||||
def __init__(self, in_shape, conv_filters, conv_kernel, conv_stride=1, conv_padding=0,
|
||||
dropout: Union[int, float] = 0, autopad=0,
|
||||
activation: Union[None, nn.Module] = nn.ReLU, interpolation_scale=0,
|
||||
use_bias=True, use_norm=False):
|
||||
bias=True, norm=False):
|
||||
super(DeConvModule, self).__init__()
|
||||
in_channels, height, width = in_shape[0], in_shape[1], in_shape[2]
|
||||
self.padding = conv_padding
|
||||
@ -74,9 +73,9 @@ class DeConvModule(nn.Module):
|
||||
|
||||
self.autopad = AutoPad() if autopad else lambda x: x
|
||||
self.interpolation = Interpolate(scale_factor=interpolation_scale) if interpolation_scale else lambda x: x
|
||||
self.norm = nn.BatchNorm2d(in_channels, eps=1e-04) if use_norm else lambda x: x
|
||||
self.norm = nn.BatchNorm2d(in_channels, eps=1e-04) if norm else lambda x: x
|
||||
self.dropout = nn.Dropout2d(dropout) if dropout else lambda x: x
|
||||
self.de_conv = nn.ConvTranspose2d(in_channels, self.conv_filters, self.conv_kernel, bias=use_bias,
|
||||
self.de_conv = nn.ConvTranspose2d(in_channels, self.conv_filters, self.conv_kernel, bias=bias,
|
||||
padding=self.padding, stride=self.stride)
|
||||
|
||||
self.activation = activation() if activation else lambda x: x
|
||||
@ -127,16 +126,16 @@ class RecurrentModule(nn.Module):
|
||||
output = self(x)
|
||||
return output.shape[1:]
|
||||
|
||||
def __init__(self, in_shape, hidden_size, num_layers=1, cell_type=nn.GRU, use_bias=True, dropout=0):
|
||||
def __init__(self, in_shape, hidden_size, num_layers=1, cell_type=nn.GRU, bias=True, dropout=0):
|
||||
super(RecurrentModule, self).__init__()
|
||||
self.use_bias = use_bias
|
||||
self.bias = bias
|
||||
self.num_layers = num_layers
|
||||
self.in_shape = in_shape
|
||||
self.hidden_size = hidden_size
|
||||
self.dropout = dropout
|
||||
self.rnn = cell_type(self.in_shape[-1] * self.in_shape[-2], hidden_size,
|
||||
num_layers=num_layers,
|
||||
bias=self.use_bias,
|
||||
bias=self.bias,
|
||||
batch_first=True,
|
||||
dropout=self.dropout)
|
||||
|
||||
|
@ -61,7 +61,7 @@ class Generator(nn.Module):
|
||||
self.deconv4 = DeConvModule(self.deconv3.shape, conv_filters=out_channels,
|
||||
conv_kernel=3,
|
||||
conv_padding=1,
|
||||
# normalize=use_norm,
|
||||
# normalize=norm,
|
||||
activation=self.out_activation
|
||||
)
|
||||
|
||||
|
@ -1,3 +1,5 @@
|
||||
from copy import deepcopy
|
||||
|
||||
from abc import ABC
|
||||
from pathlib import Path
|
||||
|
||||
@ -109,7 +111,7 @@ class LightningBaseModule(pl.LightningModule, ABC):
|
||||
|
||||
def __init__(self, hparams):
|
||||
super(LightningBaseModule, self).__init__()
|
||||
self.hparams = hparams
|
||||
self.hparams = deepcopy(hparams)
|
||||
|
||||
# Data loading
|
||||
# =============================================================================
|
||||
|
@ -66,6 +66,7 @@ class Config(ConfigParser, ABC):
|
||||
@property
|
||||
def project(self):
|
||||
return self._get_namespace_for_section('project')
|
||||
|
||||
###################################################
|
||||
|
||||
@property
|
||||
|
@ -10,6 +10,21 @@ from torch import nn
|
||||
# Hyperparamter Object
|
||||
class ModelParameters(Mapping, Namespace):
|
||||
|
||||
@property
|
||||
def module_paramters(self):
|
||||
paramter_mapping = dict()
|
||||
paramter_mapping.update(self.model_param.__dict__)
|
||||
|
||||
paramter_mapping.update(
|
||||
dict(
|
||||
activation=self._activations[paramter_mapping['activation']]
|
||||
)
|
||||
)
|
||||
|
||||
del paramter_mapping['in_shape']
|
||||
|
||||
return paramter_mapping
|
||||
|
||||
def __getitem__(self, k):
|
||||
# k: _KT -> _VT_co
|
||||
return self.__dict__[k]
|
||||
@ -22,6 +37,10 @@ class ModelParameters(Mapping, Namespace):
|
||||
# -> Iterator[_T_co]
|
||||
return iter(list(self.__dict__.keys()))
|
||||
|
||||
def __delitem__(self, key):
|
||||
self.__dict__.__delitem__(key)
|
||||
return True
|
||||
|
||||
_activations = dict(
|
||||
leaky_relu=nn.LeakyReLU,
|
||||
relu=nn.ReLU,
|
||||
|
Loading…
x
Reference in New Issue
Block a user