New Model, Many Changes
This commit is contained in:
parent
13812b83b5
commit
14ed4e0117
@ -61,10 +61,11 @@ class BaseTrainMixin:
|
||||
assert isinstance(self, LightningBaseModule)
|
||||
keys = list(outputs[0].keys())
|
||||
|
||||
summary_dict = dict(log={f'mean_{key}': torch.mean(torch.stack([output[key]
|
||||
for output in outputs]))
|
||||
for key in keys if 'loss' in key})
|
||||
return summary_dict
|
||||
summary_dict = {f'mean_{key}': torch.mean(torch.stack([output[key]
|
||||
for output in outputs]))
|
||||
for key in keys if 'loss' in key}
|
||||
for key in summary_dict.keys():
|
||||
self.log(key, summary_dict[key])
|
||||
|
||||
|
||||
class BaseValMixin:
|
||||
@ -83,16 +84,16 @@ class BaseValMixin:
|
||||
|
||||
def validation_epoch_end(self, outputs, *_, **__):
|
||||
assert isinstance(self, LightningBaseModule)
|
||||
summary_dict = dict(log=dict())
|
||||
summary_dict = dict()
|
||||
# In case of Multiple given dataloader this will outputs will be: list[list[dict[]]]
|
||||
# for output_idx, output in enumerate(outputs):
|
||||
# else:list[dict[]]
|
||||
keys = list(outputs.keys())
|
||||
# Add Every Value das has a "loss" in it, by calc. mean over all occurences.
|
||||
summary_dict['log'].update({f'mean_{key}': torch.mean(torch.stack([output[key]
|
||||
for output in outputs]))
|
||||
for key in keys if 'loss' in key}
|
||||
)
|
||||
summary_dict.update({f'mean_{key}': torch.mean(torch.stack([output[key]
|
||||
for output in outputs]))
|
||||
for key in keys if 'loss' in key}
|
||||
)
|
||||
"""
|
||||
# Additional Score like the unweighted Average Recall:
|
||||
# UnweightedAverageRecall
|
||||
@ -107,7 +108,8 @@ class BaseValMixin:
|
||||
summary_dict['log'].update({f'uar_score': uar_score})
|
||||
"""
|
||||
|
||||
return summary_dict
|
||||
for key in summary_dict.keys():
|
||||
self.log(key, summary_dict[key])
|
||||
|
||||
|
||||
class BinaryMaskDatasetMixin:
|
||||
|
@ -1,8 +1,5 @@
|
||||
from argparse import Namespace
|
||||
|
||||
from ml_lib.utils.config import Config
|
||||
|
||||
|
||||
class GlobalVar(Namespace):
|
||||
# Labels for classes
|
||||
LEFT = 1
|
||||
@ -21,10 +18,3 @@ class GlobalVar(Namespace):
|
||||
train='train',
|
||||
vali='vali',
|
||||
test='test'
|
||||
|
||||
|
||||
class ThisConfig(Config):
|
||||
|
||||
@property
|
||||
def _model_map(self):
|
||||
return dict()
|
||||
|
@ -12,6 +12,7 @@ class Speed(object):
|
||||
def __init__(self, max_amount=0.3, speed_min=1, speed_max=1):
|
||||
self.speed_max = speed_max if speed_max else 1
|
||||
self.speed_min = speed_min if speed_min else 1
|
||||
# noinspection PyTypeChecker
|
||||
self.max_amount = min(max(0, max_amount), 1)
|
||||
|
||||
def __call__(self, x):
|
||||
|
@ -1,16 +1,18 @@
|
||||
import math
|
||||
import warnings
|
||||
|
||||
from pathlib import Path
|
||||
from typing import Union
|
||||
|
||||
import torch
|
||||
import warnings
|
||||
|
||||
from torch import nn
|
||||
from torch.nn import functional as F
|
||||
|
||||
from einops import rearrange
|
||||
|
||||
import sys
|
||||
sys.path.append(str(Path(__file__).parent))
|
||||
from .util import AutoPad, Interpolate, ShapeMixin, F_x, Flatten
|
||||
|
||||
from .util import AutoPad, Interpolate, ShapeMixin, F_x, Flatten, ResidualBlock, PreNorm
|
||||
|
||||
DEVICE = torch.device('cuda' if torch.cuda.is_available() else 'cpu')
|
||||
|
||||
@ -212,81 +214,81 @@ class RecurrentModule(ShapeMixin, nn.Module):
|
||||
tensor = self.rnn(x)
|
||||
return tensor
|
||||
|
||||
|
||||
class AttentionModule(ShapeMixin, nn.Module):
|
||||
def __init__(self,in_shape, features, dropout=0.1):
|
||||
class FeedForward(nn.Module):
|
||||
def __init__(self, dim, hidden_dim, dropout = 0.):
|
||||
super().__init__()
|
||||
self.in_shape = in_shape
|
||||
self.dropout = dropout
|
||||
self.features = features
|
||||
raise NotImplementedError
|
||||
|
||||
self.net = nn.Sequential(
|
||||
nn.Linear(dim, hidden_dim),
|
||||
nn.GELU(),
|
||||
nn.Dropout(dropout),
|
||||
nn.Linear(hidden_dim, dim),
|
||||
nn.Dropout(dropout)
|
||||
)
|
||||
def forward(self, x):
|
||||
pass
|
||||
return self.net(x)
|
||||
|
||||
|
||||
class MultiHeadAttentionModule(ShapeMixin, nn.Module):
|
||||
def __init__(self, in_shape, heads, features, dropout=0.1):
|
||||
class Attention(nn.Module):
|
||||
def __init__(self, dim, heads = 8, dropout = 0.):
|
||||
super().__init__()
|
||||
self.in_shape = in_shape
|
||||
|
||||
self.features = features
|
||||
self.heads = heads
|
||||
self.final_dim = self.features // self.heads
|
||||
self.scale = dim ** -0.5
|
||||
|
||||
self.linear_q = LinearModule(self.features, self.features)
|
||||
self.linear_v = LinearModule(self.features, self.features)
|
||||
self.linear_k = LinearModule(self.features, self.features)
|
||||
self.dropout = nn.Dropout(dropout) if dropout else F_x(self.features)
|
||||
self.linear_out = nn.Linear(self.features, self.features)
|
||||
self.to_qkv = nn.Linear(dim, dim * 3, bias = False)
|
||||
self.to_out = nn.Sequential(
|
||||
nn.Linear(dim, dim),
|
||||
nn.Dropout(dropout)
|
||||
)
|
||||
|
||||
def forward(self, q, k, v, mask=None):
|
||||
def forward(self, x, mask = None):
|
||||
b, n, _, h = *x.shape, self.heads
|
||||
qkv = self.to_qkv(x).chunk(3, dim = -1)
|
||||
q, k, v = [rearrange(t, 'b n (h d) -> b h n d', h = h) for t in qkv]
|
||||
|
||||
batch_size = q.size(0)
|
||||
dots = torch.einsum('bhid,bhjd->bhij', q, k) * self.scale
|
||||
mask_value = -torch.finfo(dots.dtype).max
|
||||
|
||||
# perform linear operation and split into h heads
|
||||
k = self.linear_k(k).view(batch_size, -1, self.heads, self.final_dim)
|
||||
q = self.linear_q(q).view(batch_size, -1, self.heads, self.final_dim)
|
||||
v = self.linear_v(v).view(batch_size, -1, self.heads, self.final_dim)
|
||||
|
||||
# transpose to get dimensions bs * h * sl * features
|
||||
# ToDo: Do we need this?
|
||||
|
||||
k = k.transpose(1, 2)
|
||||
q = q.transpose(1, 2)
|
||||
v = v.transpose(1, 2)
|
||||
|
||||
# calculate attention
|
||||
scores = torch.matmul(q, k.transpose(-2, -1)) / math.sqrt(self.final_dim)
|
||||
if mask is not None:
|
||||
mask = mask.unsqueeze(1)
|
||||
scores = scores.masked_fill(mask == 0, -1e9)
|
||||
scores = F.softmax(scores, dim=-1)
|
||||
scores = self.dropout(scores)
|
||||
scores = torch.matmul(scores, v)
|
||||
mask = F.pad(mask.flatten(1), [1, 0], value = True)
|
||||
assert mask.shape[-1] == dots.shape[-1], 'mask has incorrect dimensions'
|
||||
mask = mask[:, None, :] * mask[:, :, None]
|
||||
dots.masked_fill_(~mask, mask_value)
|
||||
del mask
|
||||
|
||||
# concatenate heads and apply final linear transformation
|
||||
# ToDo: This seems to be old coding style. Do we Need this?
|
||||
concat = scores.transpose(1, 2).contiguous().view(batch_size, -1, self.features)
|
||||
attn = dots.softmax(dim=-1)
|
||||
|
||||
output = self.out(concat)
|
||||
return output
|
||||
out = torch.einsum('bhij,bhjd->bhid', attn, v)
|
||||
out = rearrange(out, 'b h n d -> b n (h d)')
|
||||
out = self.to_out(out)
|
||||
return out
|
||||
|
||||
class Transformer(nn.Module):
|
||||
def __init__(self, dim, depth, heads, mlp_dim, dropout):
|
||||
super().__init__()
|
||||
self.layers = nn.ModuleList([])
|
||||
for _ in range(depth):
|
||||
self.layers.append(nn.ModuleList([
|
||||
ResidualBlock(PreNorm(dim, Attention(dim, heads = heads, dropout = dropout))),
|
||||
ResidualBlock(PreNorm(dim, FeedForward(dim, mlp_dim, dropout = dropout)))
|
||||
]))
|
||||
|
||||
def forward(self, x, mask = None, *_, **__):
|
||||
for attn, ff in self.layers:
|
||||
x = attn(x, mask = mask)
|
||||
x = ff(x)
|
||||
return x
|
||||
|
||||
|
||||
class TransformerModule(ShapeMixin, nn.Module):
|
||||
|
||||
def __init__(self, in_shape, hidden_size, n_heads, num_layers=1, dropout=None, use_norm=False, **kwargs):
|
||||
def __init__(self, in_shape, hidden_size, n_heads, num_layers=1, dropout=None, use_norm=False, activation='gelu'):
|
||||
super(TransformerModule, self).__init__()
|
||||
|
||||
self.in_shape = in_shape
|
||||
|
||||
self.flat = Flatten(self.in_shape) if isinstance(self.in_shape, (tuple, list)) else F_x(in_shape)
|
||||
|
||||
encoder_layer = nn.TransformerEncoderLayer(self.flat_shape, n_heads, dim_feedforward=hidden_size,
|
||||
dropout=dropout, activation=kwargs.get('activation')
|
||||
)
|
||||
self.norm = nn.LayerNorm(hidden_size) if use_norm else F_x(hidden_size)
|
||||
self.transformer = nn.TransformerEncoder(encoder_layer, num_layers=num_layers, )
|
||||
self.transformer = Transformer(dim=self.flat.flat_shape, depth=num_layers, heads=n_heads,
|
||||
mlp_dim=hidden_size, dropout=dropout)
|
||||
|
||||
def forward(self, x, mask=None, key_padding_mask=None):
|
||||
tensor = self.flat(x)
|
||||
|
@ -11,7 +11,7 @@ from operator import mul
|
||||
from torch import nn
|
||||
from torch.utils.data import DataLoader
|
||||
|
||||
from .blocks import ConvModule, DeConvModule, LinearModule, MultiHeadAttentionModule
|
||||
from .blocks import ConvModule, DeConvModule, LinearModule
|
||||
|
||||
from .util import ShapeMixin, LightningBaseModule, Flatten
|
||||
|
||||
@ -112,6 +112,7 @@ class Generator(ShapeMixin, nn.Module):
|
||||
|
||||
last_shape = re_shape
|
||||
for conv_filter, conv_kernel, interpolation in zip(reversed(filters), kernels, interpolations):
|
||||
# noinspection PyTypeChecker
|
||||
self.de_conv_list.append(DeConvModule(last_shape, conv_filters=conv_filter,
|
||||
conv_kernel=conv_kernel,
|
||||
conv_padding=conv_kernel-2,
|
||||
@ -275,16 +276,3 @@ class Encoder(BaseEncoder):
|
||||
tensor = self.l1(tensor)
|
||||
tensor = self.latent_activation(tensor) if self.latent_activation else tensor
|
||||
return tensor
|
||||
|
||||
|
||||
class TransformerEncoder(ShapeMixin, nn.Module):
|
||||
|
||||
def __init__(self, in_shape):
|
||||
super(TransformerEncoder, self).__init__()
|
||||
# MultiheadSelfAttention
|
||||
self.msa = MultiHeadAttentionModule()
|
||||
|
||||
|
||||
def forward(self, x):
|
||||
|
||||
|
||||
|
@ -1,3 +1,5 @@
|
||||
from typing import List
|
||||
|
||||
from functools import reduce
|
||||
|
||||
from abc import ABC
|
||||
@ -6,7 +8,7 @@ from pathlib import Path
|
||||
import torch
|
||||
from operator import mul
|
||||
from torch import nn
|
||||
from torch.nn import functional as F
|
||||
from torch.nn import functional as F, Unfold
|
||||
|
||||
# Utility - Modules
|
||||
###################
|
||||
@ -38,6 +40,7 @@ try:
|
||||
################################
|
||||
self.hparams = hparams
|
||||
self.params = ModelParameters(hparams)
|
||||
self.lr = self.params.lr or 1e-4
|
||||
|
||||
def size(self):
|
||||
return self.shape
|
||||
@ -76,10 +79,10 @@ try:
|
||||
weight_initializer = WeightInit(in_place_init_function=in_place_init_func_)
|
||||
self.apply(weight_initializer)
|
||||
|
||||
modules = [LightningBaseModule, nn.Module]
|
||||
module_types = (LightningBaseModule, nn.Module,)
|
||||
|
||||
except ImportError:
|
||||
modules = [nn.Module, ]
|
||||
module_types = (nn.Module,)
|
||||
pass # Maybe post a hint to install pytorch-lightning.
|
||||
|
||||
|
||||
@ -88,7 +91,7 @@ class ShapeMixin:
|
||||
@property
|
||||
def shape(self):
|
||||
|
||||
assert isinstance(self, modules)
|
||||
assert isinstance(self, module_types)
|
||||
|
||||
def get_out_shape(output):
|
||||
return output.shape[1:] if len(output.shape[1:]) > 1 else output.shape[-1]
|
||||
@ -135,6 +138,41 @@ class F_x(ShapeMixin, nn.Module):
|
||||
return x
|
||||
|
||||
|
||||
class ResidualBlock(nn.Module):
|
||||
def __init__(self, fn):
|
||||
super().__init__()
|
||||
self.fn = fn
|
||||
def forward(self, x, **kwargs):
|
||||
return self.fn(x, **kwargs) + x
|
||||
|
||||
|
||||
class PreNorm(nn.Module):
|
||||
def __init__(self, dim, fn):
|
||||
super().__init__()
|
||||
self.norm = nn.LayerNorm(dim)
|
||||
self.fn = fn
|
||||
def forward(self, x, **kwargs):
|
||||
return self.fn(self.norm(x), **kwargs)
|
||||
|
||||
|
||||
class SlidingWindow(nn.Module):
|
||||
def __init__(self, kernel, stride=1, padding=0, keepdim=False):
|
||||
super(SlidingWindow, self).__init__()
|
||||
self.kernel = kernel if not isinstance(kernel, int) else (kernel, kernel)
|
||||
self.padding = padding
|
||||
self.stride = stride
|
||||
self.keepdim = keepdim
|
||||
self._unfolder = Unfold(self.kernel, dilation=1, padding=self.padding, stride=self.stride)
|
||||
|
||||
def forward(self, x):
|
||||
tensor = self._unfolder(x)
|
||||
tensor = tensor.transpose(-1, -2)
|
||||
if self.keepdim:
|
||||
shape = *x.shape[:2], -1, *self.kernel
|
||||
tensor = tensor.reshape(shape)
|
||||
return tensor
|
||||
|
||||
|
||||
# Utility - Modules
|
||||
###################
|
||||
class Flatten(ShapeMixin, nn.Module):
|
||||
@ -232,14 +270,13 @@ class AutoPadToShape(object):
|
||||
def __call__(self, x):
|
||||
if not torch.is_tensor(x):
|
||||
x = torch.as_tensor(x)
|
||||
if x.shape[1:] == self.shape or x.shape == self.shape:
|
||||
if x.shape[-len(self.shape):] == self.shape or x.shape == self.shape:
|
||||
return x
|
||||
|
||||
for i in range(-1, -len(self.shape), -1):
|
||||
idx = [0] * len(x.shape)
|
||||
idx[i] = self.shape[i] - x.shape[i]
|
||||
idx = tuple(idx)
|
||||
x = torch.nn.functional.pad(x, idx)
|
||||
idx = [0] * (len(self.shape) * 2)
|
||||
for i, j in zip(range(-1, -(len(self.shape)+1), -1), range(0, len(idx), 2)):
|
||||
idx[j] = self.shape[i] - x.shape[i]
|
||||
x = torch.nn.functional.pad(x, idx)
|
||||
return x
|
||||
|
||||
def __repr__(self):
|
||||
|
@ -94,7 +94,7 @@ class Config(ConfigParser, ABC):
|
||||
try:
|
||||
return locate_and_import_class(self.model.type)
|
||||
except AttributeError as e:
|
||||
raise AttributeError(f'The model alias you provided ("{self.get("model", "type")}")' +
|
||||
raise AttributeError(f'The model alias you provided ("{self.get("model", "type")}") ' +
|
||||
f'was not found!\n' +
|
||||
f'{e}')
|
||||
|
||||
|
@ -13,6 +13,10 @@ from torch import nn
|
||||
# Hyperparamter Object
|
||||
class ModelParameters(Namespace, Mapping):
|
||||
|
||||
@property
|
||||
def activation_as_string(self):
|
||||
return self['activation'].lower()
|
||||
|
||||
@property
|
||||
def module_kwargs(self):
|
||||
|
||||
@ -56,6 +60,7 @@ class ModelParameters(Namespace, Mapping):
|
||||
|
||||
_activations = dict(
|
||||
leaky_relu=nn.LeakyReLU,
|
||||
gelu=nn.GELU,
|
||||
elu=nn.ELU,
|
||||
relu=nn.ReLU,
|
||||
sigmoid=nn.Sigmoid,
|
||||
|
Loading…
x
Reference in New Issue
Block a user