2020-05-03 18:00:51 +02:00

64 lines
2.4 KiB
Python

import pickle
from collections import defaultdict
from pathlib import Path
import librosa as librosa
from torch.utils.data import Dataset
import torch
import variables as V
from ml_lib.modules.utils import F_x
class BinaryMasksDataset(Dataset):
_to_label = defaultdict(lambda: -1)
_to_label.update(dict(clear=V.CLEAR, mask=V.MASK))
@property
def sample_shape(self):
return self[0][0].shape
def __init__(self, data_root, setting, transforms=None):
assert isinstance(setting, str), f'Setting has to be a string, but was: {type(setting)}.'
assert setting in V.DATA_OPTIONS, f'Setting must match one of: {V.DATA_OPTIONS}.'
assert callable(transforms) or None, f'Transforms has to be callable, but was: {type(transforms)}'
super(BinaryMasksDataset, self).__init__()
self.data_root = Path(data_root)
self.setting = setting
self._transforms = transforms or F_x()
self._labels = self._build_labels()
self._wav_folder = self.data_root / 'wav'
self._wav_files = list(sorted(self._labels.keys()))
self._mel_folder = self.data_root / 'raw_mel'
def _build_labels(self):
with open(Path(self.data_root) / 'lab' / 'labels.csv', mode='r') as f:
# Exclude the header
_ = next(f)
labeldict = dict()
for row in f:
if self.setting not in row:
continue
filename, label = row.strip().split(',')
labeldict[filename] = self._to_label[label.lower()]
return labeldict
def __len__(self):
return len(self._labels)
def __getitem__(self, item):
key = self._wav_files[item]
filename = key[:-4] + '.pik'
if not (self._mel_folder / filename).exists():
raw_sample, sr = librosa.core.load(self._wav_folder / self._wav_files[item])
transformed_sample = self._transforms(raw_sample)
self._mel_folder.mkdir(exist_ok=True, parents=True)
with (self._mel_folder / filename).open(mode='wb') as f:
pickle.dump(transformed_sample, f, protocol=pickle.HIGHEST_PROTOCOL)
with (self._mel_folder / filename).open(mode='rb') as f:
sample = pickle.load(f, fix_imports=True)
label = torch.as_tensor(self._labels[key], dtype=torch.float)
return sample, label