Model Training

This commit is contained in:
Si11ium 2020-05-03 18:00:51 +02:00
parent 8a97f59906
commit e4f6506a4b
9 changed files with 167 additions and 105 deletions

56
_paramters.py Normal file
View File

@ -0,0 +1,56 @@
from argparse import ArgumentParser, Namespace
from distutils.util import strtobool
from pathlib import Path
import os
# Parameter Configuration
# =============================================================================
# Argument Parser
_ROOT = Path(__file__).parent
main_arg_parser = ArgumentParser(description="parser for fast-neural-style")
# Main Parameters
main_arg_parser.add_argument("--main_debug", type=strtobool, default=False, help="")
main_arg_parser.add_argument("--main_eval", type=strtobool, default=False, help="")
main_arg_parser.add_argument("--main_seed", type=int, default=69, help="")
# Data Parameters
main_arg_parser.add_argument("--data_worker", type=int, default=10, help="")
main_arg_parser.add_argument("--data_root", type=str, default='data', help="")
main_arg_parser.add_argument("--data_class_name", type=str, default='BinaryMasksDataset', help="")
main_arg_parser.add_argument("--data_normalized", type=strtobool, default=True, help="")
main_arg_parser.add_argument("--data_use_preprocessed", type=strtobool, default=True, help="")
# Transformation Parameters
main_arg_parser.add_argument("--transformations_to_tensor", type=strtobool, default=False, help="")
# Training Parameters
main_arg_parser.add_argument("--train_outpath", type=str, default="output", help="")
main_arg_parser.add_argument("--train_version", type=strtobool, required=False, help="")
main_arg_parser.add_argument("--train_epochs", type=int, default=500, help="")
main_arg_parser.add_argument("--train_batch_size", type=int, default=200, help="")
main_arg_parser.add_argument("--train_lr", type=float, default=1e-3, help="")
main_arg_parser.add_argument("--train_num_sanity_val_steps", type=int, default=0, help="")
# Model Parameters
main_arg_parser.add_argument("--model_type", type=str, default="BinaryClassifier", help="")
main_arg_parser.add_argument("--model_weight_init", type=str, default="xavier_normal_", help="")
main_arg_parser.add_argument("--model_activation", type=str, default="leaky_relu", help="")
main_arg_parser.add_argument("--model_filters", type=str, default="[16, 32, 64]", help="")
main_arg_parser.add_argument("--model_classes", type=int, default=2, help="")
main_arg_parser.add_argument("--model_lat_dim", type=int, default=16, help="")
main_arg_parser.add_argument("--model_bias", type=strtobool, default=True, help="")
main_arg_parser.add_argument("--model_norm", type=strtobool, default=False, help="")
main_arg_parser.add_argument("--model_dropout", type=float, default=0.00, help="")
# Project Parameters
main_arg_parser.add_argument("--project_name", type=str, default=_ROOT.name, help="")
main_arg_parser.add_argument("--project_owner", type=str, default='si11ium', help="")
main_arg_parser.add_argument("--project_neptune_key", type=str, default=os.getenv('NEPTUNE_KEY'), help="")
if __name__ == '__main__':
# Parse it
args: Namespace = main_arg_parser.parse_args()

View File

@ -0,0 +1 @@
from datasets.binar_masks import BinaryMasksDataset

View File

@ -4,6 +4,7 @@ from pathlib import Path
import librosa as librosa
from torch.utils.data import Dataset
import torch
import variables as V
from ml_lib.modules.utils import F_x
@ -11,18 +12,16 @@ from ml_lib.modules.utils import F_x
class BinaryMasksDataset(Dataset):
_to_label = defaultdict(lambda: -1)
_to_label['clear'] = V.CLEAR
_to_label['mask'] = V.MASK
settings = ['test', 'devel', 'train']
_to_label.update(dict(clear=V.CLEAR, mask=V.MASK))
@property
def sample_shape(self):
return self[0][0].shape
def __init__(self, data_root, setting, transforms=None):
assert isinstance(setting, str), f'Setting has to be a string, but was: {self.settings}.'
assert setting in self.settings, f'Setting must match one of: {self.settings}.'
assert callable(transforms) or None, f'Transforms has to be callable, but was: {transforms}'
assert isinstance(setting, str), f'Setting has to be a string, but was: {type(setting)}.'
assert setting in V.DATA_OPTIONS, f'Setting must match one of: {V.DATA_OPTIONS}.'
assert callable(transforms) or None, f'Transforms has to be callable, but was: {type(transforms)}'
super(BinaryMasksDataset, self).__init__()
self.data_root = Path(data_root)
@ -41,7 +40,7 @@ class BinaryMasksDataset(Dataset):
for row in f:
if self.setting not in row:
continue
filename, label = row.split(',')
filename, label = row.strip().split(',')
labeldict[filename] = self._to_label[label.lower()]
return labeldict
@ -60,5 +59,5 @@ class BinaryMasksDataset(Dataset):
pickle.dump(transformed_sample, f, protocol=pickle.HIGHEST_PROTOCOL)
with (self._mel_folder / filename).open(mode='rb') as f:
sample = pickle.load(f, fix_imports=True)
label = self._labels[key]
label = torch.as_tensor(self._labels[key], dtype=torch.float)
return sample, label

83
main.py
View File

@ -1,81 +1,28 @@
# Imports
# =============================================================================
import os
from distutils.util import strtobool
from pathlib import Path
from argparse import ArgumentParser, Namespace
import warnings
import torch
from pytorch_lightning import Trainer
from pytorch_lightning.callbacks import ModelCheckpoint, EarlyStopping
from torch.utils.data import DataLoader
from torchvision.transforms import Compose, ToTensor
from ml_lib.audio_toolset.audio_io import Melspectogram, NormalizeLocal, AutoPadToShape
from ml_lib.modules.utils import LightningBaseModule
from ml_lib.utils.logging import Logger
# Project Specific Config and Logger SubClasses
from util.config import MConfig
from util.logging import MLogger
warnings.filterwarnings('ignore', category=FutureWarning)
warnings.filterwarnings('ignore', category=UserWarning)
_ROOT = Path(__file__).parent
# Parameter Configuration
# =============================================================================
# Argument Parser
main_arg_parser = ArgumentParser(description="parser for fast-neural-style")
# Main Parameters
main_arg_parser.add_argument("--main_debug", type=strtobool, default=False, help="")
main_arg_parser.add_argument("--main_eval", type=strtobool, default=True, help="")
main_arg_parser.add_argument("--main_seed", type=int, default=69, help="")
# Data Parameters
main_arg_parser.add_argument("--data_worker", type=int, default=10, help="")
main_arg_parser.add_argument("--data_dataset_length", type=int, default=10000, help="")
main_arg_parser.add_argument("--data_root", type=str, default='data', help="")
main_arg_parser.add_argument("--data_normalized", type=strtobool, default=True, help="")
main_arg_parser.add_argument("--data_use_preprocessed", type=strtobool, default=True, help="")
# Transformation Parameters
main_arg_parser.add_argument("--transformations_to_tensor", type=strtobool, default=False, help="")
# Training Parameters
main_arg_parser.add_argument("--train_outpath", type=str, default="output", help="")
main_arg_parser.add_argument("--train_version", type=strtobool, required=False, help="")
main_arg_parser.add_argument("--train_epochs", type=int, default=500, help="")
main_arg_parser.add_argument("--train_batch_size", type=int, default=200, help="")
main_arg_parser.add_argument("--train_lr", type=float, default=1e-3, help="")
main_arg_parser.add_argument("--train_num_sanity_val_steps", type=int, default=0, help="")
# Model Parameters
main_arg_parser.add_argument("--model_type", type=str, default="BinaryClassifier", help="")
main_arg_parser.add_argument("--model_activation", type=str, default="leaky_relu", help="")
main_arg_parser.add_argument("--model_filters", type=str, default="[16, 32, 64]", help="")
main_arg_parser.add_argument("--model_classes", type=int, default=2, help="")
main_arg_parser.add_argument("--model_lat_dim", type=int, default=16, help="")
main_arg_parser.add_argument("--model_bias", type=strtobool, default=True, help="")
main_arg_parser.add_argument("--model_norm", type=strtobool, default=False, help="")
main_arg_parser.add_argument("--model_dropout", type=float, default=0.00, help="")
# Project Parameters
main_arg_parser.add_argument("--project_name", type=str, default=_ROOT.parent.name, help="")
main_arg_parser.add_argument("--project_owner", type=str, default='si11ium', help="")
main_arg_parser.add_argument("--project_neptune_key", type=str, default=os.getenv('NEPTUNE_KEY'), help="")
# Parse it
args: Namespace = main_arg_parser.parse_args()
def run_lightning_loop(config_obj):
# Logging
# ================================================================================
# Logger
with Logger(config_obj) as logger:
with MLogger(config_obj) as logger:
# Callbacks
# =============================================================================
# Checkpoint Saving
@ -93,24 +40,10 @@ def run_lightning_loop(config_obj):
patience=0,
)
# Dataset and Dataloaders
# =============================================================================
# Transforms
transforms = Compose([Melspectogram(), ToTensor(), NormalizeLocal()])
# Datasets
from datasets.binar_masks import BinaryMasksDataset
train_dataset = BinaryMasksDataset(config_obj.data.root, setting='train', transforms=transforms)
val_dataset = BinaryMasksDataset(config_obj.data.root, setting='devel', transforms=transforms)
# Dataloaders
train_dataloader = DataLoader(train_dataset)
val_dataloader = DataLoader(val_dataset)
# Model
# =============================================================================
# Build and Init its Weights
config_obj.set('model', 'in_shape', str(tuple(train_dataset.sample_shape)))
model: LightningBaseModule = config_obj.build_and_init_model(weight_init_function=torch.nn.init.xavier_normal_
)
model: LightningBaseModule = config_obj.build_and_init_model()
# Trainer
# =============================================================================
@ -129,7 +62,7 @@ def run_lightning_loop(config_obj):
)
# Train It
trainer.fit(model, train_dataloader=train_dataloader, val_dataloaders=val_dataloader)
trainer.fit(model)
# Save the last state & all parameters
trainer.save_checkpoint(logger.log_dir / 'weights.ckpt')
@ -144,5 +77,7 @@ def run_lightning_loop(config_obj):
if __name__ == "__main__":
config = MConfig.read_namespace(args)
from _paramters import main_arg_parser
config = MConfig.read_argparser(main_arg_parser)
trained_model = run_lightning_loop(config)

44
main_inference.py Normal file
View File

@ -0,0 +1,44 @@
from torch.utils.data import DataLoader, Dataset
from torchvision.transforms import Compose, ToTensor
from ml_lib.audio_toolset.audio_io import Melspectogram, NormalizeLocal
# Dataset and Dataloaders
# =============================================================================
# Transforms
from ml_lib.utils.model_io import SavedLightningModels
from util.config import MConfig
from util.logging import MLogger
transforms = Compose([Melspectogram(), ToTensor(), NormalizeLocal()])
# Datasets
from datasets.binar_masks import BinaryMasksDataset
def prepare_dataset(config_obj):
dataset: Dataset = BinaryMasksDataset(config_obj.data.root, setting='test', transforms=transforms)
return DataLoader(dataset=dataset,
batch_size=None,
worker=config_obj.data.worker,
shuffle=False)
def restore_logger_and_model(config_obj):
logger = MLogger(config_obj)
model = SavedLightningModels().load_checkpoint(models_root_path=logger.log_dir)
model = model.restore()
return model
if __name__ == '__main__':
from _paramters import main_arg_parser
config = MConfig().read_argparser(main_arg_parser)
test_dataset = prepare_dataset(config)
loaded_model = restore_logger_and_model(config)
print("run model here and find a format to store the output")

View File

@ -1,24 +1,23 @@
from argparse import Namespace
import torch
from torch import nn
from torch.optim import Adam
from torchvision.transforms import Compose, ToTensor
from ml_lib.audio_toolset.audio_io import Melspectogram, NormalizeLocal
from ml_lib.modules.blocks import ConvModule
from ml_lib.modules.utils import LightningBaseModule, Flatten
from ml_lib.modules.utils import LightningBaseModule, Flatten, BaseModuleMixin_Dataloaders
class BinaryClassifier(LightningBaseModule):
def test_step(self, *args, **kwargs):
pass
def test_epoch_end(self, outputs):
pass
class BinaryClassifier(BaseModuleMixin_Dataloaders, LightningBaseModule):
@classmethod
def name(cls):
return cls.__name__
def configure_optimizers(self):
return Adam(params=self.parameters(), lr=self.hparams.lr)
return Adam(params=self.parameters(), lr=self.params.lr)
def training_step(self, batch_xy, batch_nb, *args, **kwargs):
batch_x, batch_y = batch_xy
@ -26,11 +25,11 @@ class BinaryClassifier(LightningBaseModule):
loss = self.criterion(y, batch_y)
return dict(loss=loss)
def validation_step(self, batch_xy, **kwargs):
def validation_step(self, batch_xy, batch_idx, *args, **kwargs):
batch_x, batch_y = batch_xy
y = self(batch_y)
y = self(batch_x)
val_loss = self.criterion(y, batch_y)
return dict(val_loss=val_loss)
return dict(val_loss=val_loss, batch_idx=batch_idx)
def validation_epoch_end(self, outputs):
overall_val_loss = torch.mean(torch.stack([output['val_loss'] for output in outputs]))
@ -41,22 +40,36 @@ class BinaryClassifier(LightningBaseModule):
def __init__(self, hparams):
super(BinaryClassifier, self).__init__(hparams)
self.criterion = nn.BCELoss()
# Dataset and Dataloaders
# =============================================================================
# Transforms
transforms = Compose([Melspectogram(), ToTensor(), NormalizeLocal()])
# Datasets
from datasets.binar_masks import BinaryMasksDataset
self.dataset = Namespace(
**dict(
train_dataset=BinaryMasksDataset(self.params.root, setting='train', transforms=transforms),
val_dataset=BinaryMasksDataset(self.params.root, setting='devel', transforms=transforms),
test_dataset=BinaryMasksDataset(self.params.root, setting='test', transforms=transforms),
)
)
# Model Paramters
# =============================================================================
# Additional parameters
self.in_shape = self.hparams.in_shape
# Model Modules
self.conv_1 = ConvModule(self.in_shape, 32, 3, conv_stride=2, **self.hparams.module_paramters)
self.conv_2 = ConvModule(self.conv_1.shape, 64, 5, conv_stride=2, **self.hparams.module_paramters)
self.conv_3 = ConvModule(self.conv_2.shape, 128, 7, conv_stride=2, **self.hparams.module_paramters)
self.in_shape = self.dataset.train_dataset.sample_shape
self.criterion = nn.BCELoss()
# Modules
self.conv_1 = ConvModule(self.in_shape, 32, 3, conv_stride=2, **self.params.module_kwargs)
self.conv_2 = ConvModule(self.conv_1.shape, 64, 5, conv_stride=2, **self.params.module_kwargs)
self.conv_3 = ConvModule(self.conv_2.shape, 128, 7, conv_stride=2, **self.params.module_kwargs)
self.flat = Flatten(self.conv_3.shape)
self.full_1 = nn.Linear(self.flat.shape, 32, self.hparams.bias)
self.full_2 = nn.Linear(self.full_1.out_features, self.full_1.out_features // 2, self.hparams.bias)
self.full_1 = nn.Linear(self.flat.shape, 32, self.params.bias)
self.full_2 = nn.Linear(self.full_1.out_features, self.full_1.out_features // 2, self.params.bias)
self.activation = self.hparams.activation()
self.full_out = nn.Linear(self.full_2.out_features, 1, self.hparams.bias)
self.activation = self.params.activation()
self.full_out = nn.Linear(self.full_2.out_features, 1, self.params.bias)
self.sigmoid = nn.Sigmoid()
def forward(self, batch, **kwargs):

View File

@ -5,5 +5,5 @@ from models.binary_classifier import BinaryClassifier
class MConfig(Config):
@property
def model_map(self):
def _model_map(self):
return dict(BinaryClassifier=BinaryClassifier)

11
util/logging.py Normal file
View File

@ -0,0 +1,11 @@
from pathlib import Path
from ml_lib.utils.logging import Logger
class MLogger(Logger):
@property
def outpath(self):
# FIXME: Specify a special path
return Path(self.config.train.outpath)

View File

@ -1,3 +1,6 @@
# Labels
CLEAR = 0
MASK = 1
# Dataset Options
DATA_OPTIONS = ['test', 'devel', 'train']