Compare commits

...

2 Commits

Author SHA1 Message Date
Si11ium
f1f327ef17 transition 2021-02-01 10:18:30 +01:00
Si11ium
68431b848e torchaudio testing 2020-12-17 08:02:29 +01:00
41 changed files with 22953 additions and 744 deletions

View File

@ -22,7 +22,7 @@ main_arg_parser.add_argument("--main_seed", type=int, default=69, help="")
main_arg_parser.add_argument("--data_class_name", type=str, default='Urban8K', help="")
main_arg_parser.add_argument("--data_worker", type=int, default=6, help="")
main_arg_parser.add_argument("--data_root", type=str, default='data', help="")
main_arg_parser.add_argument("--data_use_preprocessed", type=strtobool, default=True, help="")
main_arg_parser.add_argument("--data_reset", type=strtobool, default=False, help="")
main_arg_parser.add_argument("--data_n_mels", type=int, default=64, help="")
main_arg_parser.add_argument("--data_sr", type=int, default=16000, help="")
main_arg_parser.add_argument("--data_hop_length", type=int, default=256, help="")

104
datasets/base_dataset.py Normal file
View File

@ -0,0 +1,104 @@
import pickle
from pathlib import Path
from typing import Union
from abc import ABC
import variables as V
from torch.utils.data import Dataset
class BaseAudioToMelDataset(Dataset, ABC):
@property
def task_type(self):
return self._task_type
@property
def classes(self):
return V.multi_classes
@property
def n_classes(self):
return V.N_CLASS_binary if self.task_type == V.TASK_OPTION_binary else V.N_CLASS_multi
@property
def sample_shape(self):
return self[0][0].shape
@property
def _fingerprint(self):
raise NotImplementedError
return str(self._mel_transform)
# Data Structures
@property
def mel_folder(self):
return self.data_root / 'mel'
@property
def wav_folder(self):
return self.data_root / self._wav_folder_name
@property
def _container_ext(self):
return '.mel'
def __init__(self, data_root: Union[str, Path], task_type, mel_kwargs,
mel_augmentations=None, audio_augmentations=None, reset=False,
wav_folder_name='wav', **_):
super(BaseAudioToMelDataset, self).__init__()
# Dataset Parameters
self.data_root = Path(data_root)
self._wav_folder_name = wav_folder_name
self.reset = reset
self.mel_kwargs = mel_kwargs
# Transformations
self.mel_augmentations = mel_augmentations
self.audio_augmentations = audio_augmentations
self._task_type = task_type
# Find all raw files and turn generator to persistent list:
self._wav_files = list(self.wav_folder.rglob('*.wav'))
# Build the Dataset
self._dataset = self._build_dataset()
def __len__(self):
raise NotImplementedError
def __getitem__(self, item):
raise NotImplementedError
def _build_dataset(self):
raise NotImplementedError
def _check_reset_and_clean_up(self, reset):
all_mel_folders = set([str(x.parent).replace(self._wav_folder_name, 'mel') for x in self._wav_files])
for mel_folder in all_mel_folders:
param_storage = Path(mel_folder) / 'data_params.pik'
param_storage.parent.mkdir(parents=True, exist_ok=True)
try:
pik_data = param_storage.read_bytes()
fingerprint = pickle.loads(pik_data)
if fingerprint == self._fingerprint:
this_reset = reset
else:
print('Diverging parameters were found; Refreshing...')
param_storage.unlink()
pik_data = pickle.dumps(self._fingerprint)
param_storage.write_bytes(pik_data)
this_reset = True
except FileNotFoundError:
pik_data = pickle.dumps(self._fingerprint)
param_storage.write_bytes(pik_data)
this_reset = True
if this_reset:
all_mel_files = self.mel_folder.rglob(f'*{self._container_ext}')
for mel_file in all_mel_files:
mel_file.unlink()

View File

@ -20,17 +20,20 @@ class BinaryMasksDataset(Dataset):
@property
def _fingerprint(self):
return dict(**self._mel_kwargs, normalize=self.normalize)
return dict(**self._mel_kwargs if self._mel_kwargs else dict())
def __init__(self, data_root, setting, mel_transforms, transforms=None, stretch_dataset=False,
use_preprocessed=True):
use_preprocessed=True, mel_kwargs=None):
self.stretch = stretch_dataset
assert isinstance(setting, str), f'Setting has to be a string, but was: {type(setting)}.'
assert setting in V.DATA_OPTIONS, f'Setting must match one of: {V.DATA_OPTIONS}.'
super(BinaryMasksDataset, self).__init__()
self.task = V.TASK_OPTION_binary
self.data_root = Path(data_root) / 'ComParE2020_Mask'
self.setting = setting
self._mel_kwargs = mel_kwargs
self._wav_folder = self.data_root / 'wav'
self._mel_folder = self.data_root / 'mel'
self.container_ext = '.pik'

View File

@ -1,140 +1,78 @@
import pickle
from pathlib import Path
import multiprocessing as mp
from typing import Union, List
import librosa as librosa
from torch.utils.data import Dataset, ConcatDataset
import multiprocessing as mp
from torch.utils.data import ConcatDataset
import torch
from tqdm import tqdm
import variables as V
from ml_lib.audio_toolset.mel_dataset import TorchMelDataset
from ml_lib.modules.util import F_x
from datasets.base_dataset import BaseAudioToMelDataset
from ml_lib.audio_toolset.audio_to_mel_dataset import LibrosaAudioToMelDataset, PyTorchAudioToMelDataset
class Urban8K(Dataset):
try:
torch.multiprocessing.set_sharing_strategy('file_system')
except AttributeError:
pass
@property
def sample_shape(self):
return self[0][0].shape
class Urban8K(BaseAudioToMelDataset):
@property
def _fingerprint(self):
return str(self._mel_transform)
def __init__(self, data_root, setting, mel_transforms, fold=1, transforms=None,
use_preprocessed=True, audio_segment_len=62, audio_hop_len=30, num_worker=mp.cpu_count(),
**_):
def __init__(self,
data_root, setting, fold: Union[int, List]=1, num_worker=mp.cpu_count(),
reset=False, sample_segment_len=50, sample_hop_len=20,
**kwargs):
self.num_worker = num_worker
assert isinstance(setting, str), f'Setting has to be a string, but was: {type(setting)}.'
assert setting in V.DATA_OPTIONS, f'Setting must match one of: {V.DATA_OPTIONS}.'
assert fold in range(1, 11)
super(Urban8K, self).__init__()
assert fold in range(1, 11) if isinstance(fold, int) else all([f in range(1, 11) for f in fold])
self.data_root = Path(data_root) / 'UrbanSound8K'
#Dataset Paramters
self.setting = setting
self.num_worker = num_worker
self.fold = fold if self.setting == V.DATA_OPTIONS.train else 10
self.use_preprocessed = use_preprocessed
self._wav_folder = self.data_root / 'audio' / f'fold{self.fold}'
self._mel_folder = self.data_root / 'mel' / f'fold{self.fold}'
self.container_ext = '.pik'
self._mel_transform = mel_transforms
fold = fold if self.setting != V.DATA_OPTION_test else 10
self.fold = fold if isinstance(fold, list) else [fold]
self._labels = self._build_labels()
self._wav_files = list(sorted(self._labels.keys()))
transforms = transforms or F_x(in_shape=None)
self.sample_segment_len = sample_segment_len
self.sample_hop_len = sample_hop_len
param_storage = self._mel_folder / 'data_params.pik'
self._mel_folder.mkdir(parents=True, exist_ok=True)
try:
pik_data = param_storage.read_bytes()
fingerprint = pickle.loads(pik_data)
if fingerprint == self._fingerprint:
self.use_preprocessed = use_preprocessed
else:
print('Diverging parameters were found; Refreshing...')
param_storage.unlink()
pik_data = pickle.dumps(self._fingerprint)
param_storage.write_bytes(pik_data)
self.use_preprocessed = False
# Dataset specific super init
super(Urban8K, self).__init__(Path(data_root) / 'UrbanSound8K',
V.TASK_OPTION_multiclass, reset=reset, wav_folder_name='audio', **kwargs
)
except FileNotFoundError:
pik_data = pickle.dumps(self._fingerprint)
param_storage.write_bytes(pik_data)
self.use_preprocessed = False
def _build_subdataset(self, row):
slice_file_name, fs_id, start, end, salience, fold, class_id, class_name = row.strip().split(',')
fold, class_id = (int(x) for x in (fold, class_id))
if int(fold) in self.fold:
audio_file_path = self.wav_folder / f'fold{fold}' / slice_file_name
return PyTorchAudioToMelDataset(audio_file_path, class_id, **self.__dict__)
else:
return None
while True:
if not self.use_preprocessed:
self._pre_process()
try:
self._dataset = ConcatDataset(
[TorchMelDataset(identifier=key, mel_path=self._mel_folder, transform=transforms,
segment_len=audio_segment_len, hop_len=audio_hop_len,
label=self._labels[key]['label']
) for key in self._labels.keys()]
)
break
except IOError:
self.use_preprocessed = False
pass
def _build_labels(self):
labeldict = dict()
def _build_dataset(self):
dataset= list()
with open(Path(self.data_root) / 'metadata' / 'UrbanSound8K.csv', mode='r') as f:
# Exclude the header
_ = next(f)
for row in f:
slice_file_name, fs_id, start, end, salience, fold, class_id, class_name = row.strip().split(',')
if int(fold) == self.fold:
key = slice_file_name.replace('.wav', '')
labeldict[key] = dict(label=int(class_id), fold=int(fold))
all_rows = list(f)
chunksize = len(all_rows) // max(self.num_worker, 1)
with mp.Pool(processes=self.num_worker) as pool:
with tqdm(total=len(all_rows)) as pbar:
for i, sub_dataset in enumerate(
pool.imap_unordered(self._build_subdataset, all_rows, chunksize=chunksize)):
pbar.update()
dataset.append(sub_dataset)
# Delete File if one exists.
if not self.use_preprocessed:
for key in labeldict.keys():
for mel_file in self._mel_folder.rglob(f'{key}_*'):
try:
mel_file.unlink(missing_ok=True)
except FileNotFoundError:
pass
return labeldict
dataset = ConcatDataset([x for x in dataset if x is not None])
return dataset
def __len__(self):
return len(self._dataset)
def _pre_process(self):
print('Preprocessing Mel Files....')
with mp.Pool(processes=self.num_worker) as pool:
with tqdm(total=len(self._labels)) as pbar:
for i, _ in enumerate(pool.imap_unordered(self._build_mel, self._labels.keys())):
pbar.update()
def _build_mel(self, filename):
wav_file = self._wav_folder / (filename.replace('X', '') + '.wav')
mel_file = list(self._mel_folder.glob(f'{filename}_*'))
if not mel_file:
raw_sample, sr = librosa.core.load(wav_file)
mel_sample = self._mel_transform(raw_sample)
m, n = mel_sample.shape
mel_file = self._mel_folder / f'{filename}_{m}_{n}'
self._mel_folder.mkdir(exist_ok=True, parents=True)
with mel_file.open(mode='wb') as f:
pickle.dump(mel_sample, f, protocol=pickle.HIGHEST_PROTOCOL)
else:
# print(f"Already existed.. Skipping {filename}")
mel_file = mel_file[0]
with mel_file.open(mode='rb') as f:
mel_sample = pickle.load(f, fix_imports=True)
return mel_sample, mel_file
def __getitem__(self, item):
transformed_samples, label = self._dataset[item]
label = torch.as_tensor(label, dtype=torch.float)
label = torch.as_tensor(label, dtype=torch.int)
return transformed_samples, label

View File

@ -1,140 +0,0 @@
import pickle
from pathlib import Path
import multiprocessing as mp
import librosa as librosa
from torch.utils.data import Dataset, ConcatDataset
import torch
from tqdm import tqdm
import variables as V
from ml_lib.audio_toolset.mel_dataset import TorchMelDataset
from ml_lib.modules.util import F_x
class Urban8K_TO(Dataset):
@property
def sample_shape(self):
return self[0][0].shape
@property
def _fingerprint(self):
return str(self._mel_transform)
def __init__(self, data_root, setting, mel_transforms, fold=1, transforms=None,
use_preprocessed=True, audio_segment_len=1, audio_hop_len=1, num_worker=mp.cpu_count(),
**_):
assert isinstance(setting, str), f'Setting has to be a string, but was: {type(setting)}.'
assert setting in V.DATA_OPTIONS, f'Setting must match one of: {V.DATA_OPTIONS}.'
assert fold in range(1, 11)
super(Urban8K_TO, self).__init__()
self.data_root = Path(data_root) / 'UrbanSound8K'
self.setting = setting
self.num_worker = num_worker
self.fold = fold if self.setting == V.DATA_OPTIONS.train else 10
self.use_preprocessed = use_preprocessed
self._wav_folder = self.data_root / 'audio' / f'fold{self.fold}'
self._mel_folder = self.data_root / 'mel' / f'fold{self.fold}'
self.container_ext = '.pik'
self._mel_transform = mel_transforms
self._labels = self._build_labels()
self._wav_files = list(sorted(self._labels.keys()))
transforms = transforms or F_x(in_shape=None)
param_storage = self._mel_folder / 'data_params.pik'
self._mel_folder.mkdir(parents=True, exist_ok=True)
try:
pik_data = param_storage.read_bytes()
fingerprint = pickle.loads(pik_data)
if fingerprint == self._fingerprint:
self.use_preprocessed = use_preprocessed
else:
print('Diverging parameters were found; Refreshing...')
param_storage.unlink()
pik_data = pickle.dumps(self._fingerprint)
param_storage.write_bytes(pik_data)
self.use_preprocessed = False
except FileNotFoundError:
pik_data = pickle.dumps(self._fingerprint)
param_storage.write_bytes(pik_data)
self.use_preprocessed = False
while True:
if not self.use_preprocessed:
self._pre_process()
try:
self._dataset = ConcatDataset(
[TorchMelDataset(identifier=key, mel_path=self._mel_folder, transform=transforms,
segment_len=audio_segment_len, hop_len=audio_hop_len,
label=self._labels[key]['label']
) for key in self._labels.keys()]
)
break
except IOError:
self.use_preprocessed = False
pass
def _build_labels(self):
labeldict = dict()
with open(Path(self.data_root) / 'metadata' / 'UrbanSound8K.csv', mode='r') as f:
# Exclude the header
_ = next(f)
for row in f:
slice_file_name, fs_id, start, end, salience, fold, class_id, class_name = row.strip().split(',')
if int(fold) == self.fold:
key = slice_file_name.replace('.wav', '')
labeldict[key] = dict(label=int(class_id), fold=int(fold))
# Delete File if one exists.
if not self.use_preprocessed:
for key in labeldict.keys():
for mel_file in self._mel_folder.rglob(f'{key}_*'):
try:
mel_file.unlink(missing_ok=True)
except FileNotFoundError:
pass
return labeldict
def __len__(self):
return len(self._dataset)
def _pre_process(self):
print('Preprocessing Mel Files....')
with mp.Pool(processes=self.num_worker) as pool:
with tqdm(total=len(self._labels)) as pbar:
for i, _ in enumerate(pool.imap_unordered(self._build_mel, self._labels.keys())):
pbar.update()
def _build_mel(self, filename):
wav_file = self._wav_folder / (filename.replace('X', '') + '.wav')
mel_file = list(self._mel_folder.glob(f'{filename}_*'))
if not mel_file:
raw_sample, sr = librosa.core.load(wav_file)
mel_sample = self._mel_transform(raw_sample)
m, n = mel_sample.shape
mel_file = self._mel_folder / f'{filename}_{m}_{n}'
self._mel_folder.mkdir(exist_ok=True, parents=True)
with mel_file.open(mode='wb') as f:
pickle.dump(mel_sample, f, protocol=pickle.HIGHEST_PROTOCOL)
else:
# print(f"Already existed.. Skipping {filename}")
mel_file = mel_file[0]
with mel_file.open(mode='rb') as f:
mel_sample = pickle.load(f, fix_imports=True)
return mel_sample, mel_file
def __getitem__(self, item):
transformed_samples, label = self._dataset[item]
label = torch.as_tensor(label, dtype=torch.float)
return transformed_samples, label

View File

@ -9,7 +9,7 @@ from torch.utils.data import DataLoader, Dataset
from torchvision.transforms import Compose, RandomApply
from ml_lib.audio_toolset.audio_augmentation import Speed
from ml_lib.audio_toolset.audio_io import AudioToMel, NormalizeLocal, MelToImage
from ml_lib.audio_toolset.audio_io import LibrosaAudioToMel, NormalizeLocal, MelToImage
# Dataset and Dataloaders
# =============================================================================
@ -28,8 +28,8 @@ from datasets.binar_masks import BinaryMasksDataset
def prepare_dataloader(config_obj):
mel_transforms = Compose([
AudioToMel(sr=config_obj.data.sr, n_mels=config_obj.data.n_mels, n_fft=config_obj.data.n_fft,
hop_length=config_obj.data.hop_length),
LibrosaAudioToMel(sr=config_obj.data.sr, n_mels=config_obj.data.n_mels, n_fft=config_obj.data.n_fft,
hop_length=config_obj.data.hop_length),
MelToImage()])
transforms = Compose([NormalizeLocal(), ToTensor()])
"""

View File

@ -8,7 +8,7 @@ from torch.utils.data import DataLoader, Dataset
from torchvision.transforms import Compose, RandomApply
from ml_lib.audio_toolset.audio_augmentation import Speed
from ml_lib.audio_toolset.audio_io import AudioToMel, NormalizeLocal, MelToImage
from ml_lib.audio_toolset.audio_io import LibrosaAudioToMel, NormalizeLocal, MelToImage
# Dataset and Dataloaders
# =============================================================================
@ -26,8 +26,8 @@ from datasets.binar_masks import BinaryMasksDataset
def prepare_dataloader(config_obj):
mel_transforms = Compose([
AudioToMel(sr=config_obj.data.sr, n_mels=config_obj.data.n_mels, n_fft=config_obj.data.n_fft,
hop_length=config_obj.data.hop_length),
LibrosaAudioToMel(sr=config_obj.data.sr, n_mels=config_obj.data.n_mels, n_fft=config_obj.data.n_fft,
hop_length=config_obj.data.hop_length),
MelToImage()])
transforms = Compose([NormalizeLocal(), ToTensor()])
aug_transforms = Compose([

View File

@ -1,114 +0,0 @@
from argparse import Namespace
import warnings
import torch
from torch import nn
from einops import rearrange, repeat
from ml_lib.modules.blocks import TransformerModule
from ml_lib.modules.util import (LightningBaseModule, AutoPadToShape, F_x)
from util.module_mixins import (BaseOptimizerMixin, BaseTrainMixin, BaseValMixin, DatasetMixin,
BaseDataloadersMixin, BaseTestMixin)
MIN_NUM_PATCHES = 16
class VisualTransformer(DatasetMixin,
BaseDataloadersMixin,
BaseTrainMixin,
BaseValMixin,
BaseTestMixin,
BaseOptimizerMixin,
LightningBaseModule
):
def __init__(self, hparams):
super(VisualTransformer, self).__init__(hparams)
# Dataset
# =============================================================================
self.dataset = self.build_dataset()
self.in_shape = self.dataset.train_dataset.sample_shape
assert len(self.in_shape) == 3, 'There need to be three Dimensions'
channels, height, width = self.in_shape
# Model Paramters
# =============================================================================
# Additional parameters
self.embed_dim = self.params.embedding_size
# Automatic Image Shaping
self.patch_size = self.params.patch_size
image_size = (max(height, width) // self.patch_size) * self.patch_size
self.image_size = image_size + self.patch_size if image_size < max(height, width) else image_size
# This should be obsolete
assert self.image_size % self.patch_size == 0, 'image dimensions must be divisible by the patch size'
num_patches = (self.image_size // self.patch_size) ** 2
patch_dim = channels * self.patch_size ** 2
assert num_patches >= MIN_NUM_PATCHES, f'your number of patches ({num_patches}) is way too small for ' + \
f'attention. Try decreasing your patch size'
# Correct the Embedding Dim
if not self.embed_dim % self.params.heads == 0:
self.embed_dim = (self.embed_dim // self.params.heads) * self.params.heads
message = ('Embedding Dimension was fixed to be devideable by the number' +
f' of attention heads, is now: {self.embed_dim}')
for func in print, warnings.warn:
func(message)
# Utility Modules
self.autopad = AutoPadToShape((self.image_size, self.image_size))
# Modules with Parameters
self.transformer = TransformerModule(in_shape=self.embed_dim, hidden_size=self.params.lat_dim,
n_heads=self.params.heads, num_layers=self.params.attn_depth,
dropout=self.params.dropout, use_norm=self.params.use_norm,
activation=self.params.activation_as_string
)
self.pos_embedding = nn.Parameter(torch.randn(1, num_patches + 1, self.embed_dim))
self.patch_to_embedding = nn.Linear(patch_dim, self.embed_dim) if self.params.embedding_size \
else F_x(self.embed_dim)
self.cls_token = nn.Parameter(torch.randn(1, 1, self.embed_dim))
self.dropout = nn.Dropout(self.params.dropout)
self.to_cls_token = nn.Identity()
self.mlp_head = nn.Sequential(
nn.LayerNorm(self.embed_dim),
nn.Linear(self.embed_dim, self.params.lat_dim),
nn.GELU(),
nn.Dropout(self.params.dropout),
nn.Linear(self.params.lat_dim, 1),
nn.Sigmoid()
)
def forward(self, x, mask=None):
"""
:param x: the sequence to the encoder (required).
:param mask: the mask for the src sequence (optional).
:return:
"""
tensor = self.autopad(x)
p = self.params.patch_size
tensor = rearrange(tensor, 'b c (h p1) (w p2) -> b (h w) (p1 p2 c)', p1 = p, p2 = p)
tensor = self.patch_to_embedding(tensor)
b, n, _ = tensor.shape
cls_tokens = repeat(self.cls_token, '() n d -> b n d', b = b)
tensor = torch.cat((cls_tokens, tensor), dim=1)
tensor += self.pos_embedding[:, :(n + 1)]
tensor = self.dropout(tensor)
tensor = self.transformer(tensor, mask)
tensor = self.to_cls_token(tensor[:, 0])
tensor = self.mlp_head(tensor)
return Namespace(main_out=tensor)

View File

@ -1,111 +0,0 @@
from argparse import Namespace
import warnings
import torch
from torch import nn
from ml_lib.modules.blocks import TransformerModule
from ml_lib.modules.util import (LightningBaseModule, AutoPadToShape, F_x, SlidingWindow)
from util.module_mixins import (BaseOptimizerMixin, BaseTrainMixin, BaseValMixin, DatasetMixin,
BaseDataloadersMixin, BaseTestMixin)
MIN_NUM_PATCHES = 16
class HorizontalVisualTransformer(DatasetMixin,
BaseDataloadersMixin,
BaseTrainMixin,
BaseValMixin,
BaseTestMixin,
BaseOptimizerMixin,
LightningBaseModule
):
def __init__(self, hparams):
super(HorizontalVisualTransformer, self).__init__(hparams)
# Dataset
# =============================================================================
self.dataset = self.build_dataset()
self.in_shape = self.dataset.train_dataset.sample_shape
assert len(self.in_shape) == 3, 'There need to be three Dimensions'
channels, height, width = self.in_shape
# Model Paramters
# =============================================================================
# Additional parameters
self.embed_dim = self.params.embedding_size
self.patch_size = self.params.patch_size
self.height = height
self.width = width
self.channels = channels
self.new_height = ((self.height - self.patch_size)//1) + 1
num_patches = self.new_height - (self.patch_size // 2)
patch_dim = channels * self.patch_size * self.width
assert num_patches >= MIN_NUM_PATCHES, f'your number of patches ({num_patches}) is way too small for ' + \
f'attention. Try decreasing your patch size'
# Correct the Embedding Dim
if not self.embed_dim % self.params.heads == 0:
self.embed_dim = (self.embed_dim // self.params.heads) * self.params.heads
message = ('Embedding Dimension was fixed to be devideable by the number' +
f' of attention heads, is now: {self.embed_dim}')
for func in print, warnings.warn:
func(message)
# Utility Modules
self.autopad = AutoPadToShape((self.new_height, self.width))
self.dropout = nn.Dropout(self.params.dropout)
self.slider = SlidingWindow((channels, *self.autopad.target_shape), (self.patch_size, self.width),
keepdim=False)
# Modules with Parameters
self.transformer = TransformerModule(in_shape=self.embed_dim, hidden_size=self.params.lat_dim,
n_heads=self.params.heads, num_layers=self.params.attn_depth,
dropout=self.params.dropout, use_norm=self.params.use_norm,
activation=self.params.activation_as_string
)
self.pos_embedding = nn.Parameter(torch.randn(1, num_patches + 1, self.embed_dim))
self.patch_to_embedding = nn.Linear(patch_dim, self.embed_dim) if self.params.embedding_size \
else F_x(self.embed_dim)
self.cls_token = nn.Parameter(torch.randn(1, 1, self.embed_dim))
self.to_cls_token = nn.Identity()
self.mlp_head = nn.Sequential(
nn.LayerNorm(self.embed_dim),
nn.Linear(self.embed_dim, self.params.lat_dim),
nn.GELU(),
nn.Dropout(self.params.dropout),
nn.Linear(self.params.lat_dim, 1),
nn.Sigmoid()
)
def forward(self, x, mask=None):
"""
:param x: the sequence to the encoder (required).
:param mask: the mask for the src sequence (optional).
:return:
"""
tensor = self.autopad(x)
tensor = self.slider(tensor)
tensor = self.patch_to_embedding(tensor)
b, n, _ = tensor.shape
# cls_tokens = repeat(self.cls_token, '() n d -> b n d', b = b)
cls_tokens = self.cls_token.repeat((b, 1, 1))
tensor = torch.cat((cls_tokens, tensor), dim=1)
tensor += self.pos_embedding[:, :(n + 1)]
tensor = self.dropout(tensor)
tensor = self.transformer(tensor, mask)
tensor = self.to_cls_token(tensor[:, 0])
tensor = self.mlp_head(tensor)
return Namespace(main_out=tensor)

View File

@ -1,110 +0,0 @@
from argparse import Namespace
import warnings
import torch
from torch import nn
from ml_lib.modules.blocks import TransformerModule
from ml_lib.modules.util import (LightningBaseModule, AutoPadToShape, F_x, SlidingWindow)
from util.module_mixins import (BaseOptimizerMixin, BaseTrainMixin, BaseValMixin, DatasetMixin,
BaseDataloadersMixin, BaseTestMixin)
MIN_NUM_PATCHES = 16
class VerticalVisualTransformer(DatasetMixin,
BaseDataloadersMixin,
BaseTrainMixin,
BaseValMixin,
BaseTestMixin,
BaseOptimizerMixin,
LightningBaseModule
):
def __init__(self, hparams):
super(VerticalVisualTransformer, self).__init__(hparams)
# Dataset
# =============================================================================
self.dataset = self.build_dataset()
self.in_shape = self.dataset.train_dataset.sample_shape
assert len(self.in_shape) == 3, 'There need to be three Dimensions'
channels, height, width = self.in_shape
# Model Paramters
# =============================================================================
# Additional parameters
self.embed_dim = self.params.embedding_size
self.patch_size = self.params.patch_size
self.height = height
self.width = width
self.channels = channels
self.new_width = ((self.width - self.patch_size)//1) + 1
num_patches = self.new_width - (self.patch_size // 2)
patch_dim = channels * self.patch_size * self.height
assert num_patches >= MIN_NUM_PATCHES, f'your number of patches ({num_patches}) is way too small for ' + \
f'attention. Try decreasing your patch size'
# Correct the Embedding Dim
if not self.embed_dim % self.params.heads == 0:
self.embed_dim = (self.embed_dim // self.params.heads) * self.params.heads
message = ('Embedding Dimension was fixed to be devideable by the number' +
f' of attention heads, is now: {self.embed_dim}')
for func in print, warnings.warn:
func(message)
# Utility Modules
self.autopad = AutoPadToShape((self.height, self.new_width))
self.dropout = nn.Dropout(self.params.dropout)
self.slider = SlidingWindow((channels, *self.autopad.target_shape), (self.height, self.patch_size), keepdim=False)
# Modules with Parameters
self.transformer = TransformerModule(in_shape=self.embed_dim, hidden_size=self.params.lat_dim,
n_heads=self.params.heads, num_layers=self.params.attn_depth,
dropout=self.params.dropout, use_norm=self.params.use_norm,
activation=self.params.activation_as_string
)
self.pos_embedding = nn.Parameter(torch.randn(1, num_patches + 1, self.embed_dim))
self.patch_to_embedding = nn.Linear(patch_dim, self.embed_dim) if self.params.embedding_size \
else F_x(self.embed_dim)
self.cls_token = nn.Parameter(torch.randn(1, 1, self.embed_dim))
self.to_cls_token = nn.Identity()
self.mlp_head = nn.Sequential(
nn.LayerNorm(self.embed_dim),
nn.Linear(self.embed_dim, self.params.lat_dim),
nn.GELU(),
nn.Dropout(self.params.dropout),
nn.Linear(self.params.lat_dim, 1),
nn.Sigmoid()
)
def forward(self, x, mask=None):
"""
:param x: the sequence to the encoder (required).
:param mask: the mask for the src sequence (optional).
:return:
"""
tensor = self.autopad(x)
tensor = self.slider(tensor)
tensor = self.patch_to_embedding(tensor)
b, n, _ = tensor.shape
# cls_tokens = repeat(self.cls_token, '() n d -> b n d', b = b)
cls_tokens = self.cls_token.repeat((b, 1, 1))
tensor = torch.cat((cls_tokens, tensor), dim=1)
tensor += self.pos_embedding[:, :(n + 1)]
tensor = self.dropout(tensor)
tensor = self.transformer(tensor, mask)
tensor = self.to_cls_token(tensor[:, 0])
tensor = self.mlp_head(tensor)
return Namespace(main_out=tensor)

View File

@ -14,64 +14,134 @@ warnings.filterwarnings('ignore', category=UserWarning)
if __name__ == '__main__':
args = main_arg_parser.parse_args()
# Model Settings
config = Config().read_namespace(args)
if False:
args = main_arg_parser.parse_args()
# Model Settings
config = Config().read_namespace(args)
arg_dict = dict()
for seed in range(1):
arg_dict.update(main_seed=seed)
if False:
for patch_size in [3, 5 , 9]:
for model in ['VerticalVisualTransformer']:
arg_dict.update(model_type=model, model_patch_size=patch_size)
raw_conf = dict(data_speed_amount=0.0, data_speed_min=0.0, data_speed_max=0.0,
data_mask_ratio=0.0, data_noise_ratio=0.0, data_shift_ratio=0.0, data_loudness_ratio=0.0,
data_stretch=False, train_epochs=401)
arg_dict = dict()
for seed in range(1):
arg_dict.update(main_seed=seed)
if False:
for patch_size in [3, 5 , 9]:
for model in ['VerticalVisualTransformer']:
arg_dict.update(model_type=model, model_patch_size=patch_size)
raw_conf = dict(data_speed_amount=0.0, data_speed_min=0.0, data_speed_max=0.0,
data_mask_ratio=0.0, data_noise_ratio=0.0, data_shift_ratio=0.0, data_loudness_ratio=0.0,
data_stretch=False, train_epochs=401)
all_conf = dict(data_speed_amount=0.4, data_speed_min=0.7, data_speed_max=1.7,
data_mask_ratio=0.2, data_noise_ratio=0.4, data_shift_ratio=0.4, data_loudness_ratio=0.4,
data_stretch=True, train_epochs=101)
all_conf = dict(data_speed_amount=0.4, data_speed_min=0.7, data_speed_max=1.7,
data_mask_ratio=0.2, data_noise_ratio=0.4, data_shift_ratio=0.4, data_loudness_ratio=0.4,
data_stretch=True, train_epochs=101)
speed_conf = raw_conf.copy()
speed_conf.update(data_speed_amount=0.4, data_speed_min=0.7, data_speed_max=1.7,
data_stretch=True, train_epochs=101)
speed_conf = raw_conf.copy()
speed_conf.update(data_speed_amount=0.4, data_speed_min=0.7, data_speed_max=1.7,
data_stretch=True, train_epochs=101)
mask_conf = raw_conf.copy()
mask_conf.update(data_mask_ratio=0.2, data_stretch=True, train_epochs=101)
mask_conf = raw_conf.copy()
mask_conf.update(data_mask_ratio=0.2, data_stretch=True, train_epochs=101)
noise_conf = raw_conf.copy()
noise_conf.update(data_noise_ratio=0.4, data_stretch=True, train_epochs=101)
noise_conf = raw_conf.copy()
noise_conf.update(data_noise_ratio=0.4, data_stretch=True, train_epochs=101)
shift_conf = raw_conf.copy()
shift_conf.update(data_shift_ratio=0.4, data_stretch=True, train_epochs=101)
shift_conf = raw_conf.copy()
shift_conf.update(data_shift_ratio=0.4, data_stretch=True, train_epochs=101)
loudness_conf = raw_conf.copy()
loudness_conf.update(data_loudness_ratio=0.4, data_stretch=True, train_epochs=101)
loudness_conf = raw_conf.copy()
loudness_conf.update(data_loudness_ratio=0.4, data_stretch=True, train_epochs=101)
for dicts in [raw_conf, all_conf, speed_conf, mask_conf, noise_conf, shift_conf, loudness_conf]:
for dicts in [raw_conf, all_conf, speed_conf, mask_conf, noise_conf, shift_conf, loudness_conf]:
arg_dict.update(dicts)
if True:
for patch_size in [7]:
for lat_dim in [32]:
for heads in [8]:
for embedding_size in [7**2]:
for attn_depth in [1, 3, 5, 7]:
for model in ['HorizontalVisualTransformer']:
arg_dict.update(
model_type=model,
model_patch_size=patch_size,
model_lat_dim=lat_dim,
model_heads=heads,
model_embedding_size=embedding_size,
model_attn_depth=attn_depth
)
config = config.update(arg_dict)
version_path = config.exp_path / config.version
if version_path.exists():
if not (version_path / 'weights.ckpt').exists():
shutil.rmtree(version_path)
else:
continue
run_lightning_loop(config)
import matplotlib
import matplotlib.pyplot as plt
import matplotlib.cm as cm
import numpy as np
from diffractio import degrees, mm, plt, sp, um, np
from diffractio.scalar_fields_XY import Scalar_field_XY
from diffractio.utils_drawing import draw_several_fields
from diffractio.scalar_masks_XY import Scalar_mask_XY
from diffractio.scalar_sources_XY import Scalar_source_XY
from matplotlib import rcParams
rcParams['figure.figsize']=(7,5)
rcParams['figure.dpi']=75
period = 20 * um
num_pixels = 512
length = 250 * um
x0 = np.linspace(-length / 2, length / 2, num_pixels)
y0 = np.linspace(-length / 2, length / 2, num_pixels)
wavelength = 0.6238 * um
u1 = Scalar_source_XY(x=x0, y=y0, wavelength=wavelength)
u1.plane_wave(A=1, theta=0 * degrees, phi=0 * degrees)
t1 = Scalar_mask_XY(x=x0, y=y0, wavelength=wavelength)
t1.forked_grating(kind='amplitude',
r0=(0 * um, 0 * um), period=period, l=3, alpha=2, angle=0 * degrees)
u2 = u1 * t1
t2 = Scalar_mask_XY(x=x0, y=y0, wavelength=wavelength)
t2.roughness(t=(20 * um, 20 * um), s=1 * um)
u2 = u2 * t2
u2.draw(kind='phase')
u3 = u2.RS(z=1 * mm, new_field=True)
u4 = u2.RS(z=5 * mm, new_field=True)
u5 = u2.RS(z=10 * mm, new_field=True)
print('draw')
draw_several_fields((u3, u4, u5), titulos=('1 mm', '5 mm', '10 mm'), logarithm=True)
plt.show()
pass
u2 = t2 * u1
u2.draw(kind='phase')
u3 = u2.RS(z=1 * mm, new_field=True)
u4 = u2.RS(z=5 * mm, new_field=True)
u5 = u2.RS(z=10 * mm, new_field=True)
print('draw')
draw_several_fields((u3, u4, u5), titulos=('1 mm', '5 mm', '10 mm'), logarithm=True)
plt.show()
arg_dict.update(dicts)
if True:
for patch_size in [7]:
for lat_dim in [32]:
for heads in [8]:
for embedding_size in [7**2]:
for attn_depth in [1, 3, 5, 7]:
for model in ['HorizontalVisualTransformer']:
arg_dict.update(
model_type=model,
model_patch_size=patch_size,
model_lat_dim=lat_dim,
model_heads=heads,
model_embedding_size=embedding_size,
model_attn_depth=attn_depth
)
config = config.update(arg_dict)
version_path = config.exp_path / config.version
if version_path.exists():
if not (version_path / 'weights.ckpt').exists():
shutil.rmtree(version_path)
else:
continue
run_lightning_loop(config)

File diff suppressed because it is too large Load Diff

BIN
output/CC.pdf Normal file

Binary file not shown.

BIN
output/SSC.pdf Normal file

Binary file not shown.

BIN
output/SSC2.pdf Normal file

Binary file not shown.

BIN
output/SSN.pdf Normal file

Binary file not shown.

BIN
output/SSN2.pdf Normal file

Binary file not shown.

BIN
output/all_2.png Normal file

Binary file not shown.

After

Width:  |  Height:  |  Size: 20 KiB

BIN
output/desc.pdf Normal file

Binary file not shown.

BIN
output/desc2.pdf Normal file

Binary file not shown.

1
output/drawings.drawio Normal file

File diff suppressed because one or more lines are too long

BIN
output/ensemble.pdf Normal file

Binary file not shown.

BIN
output/loudness.png Normal file

Binary file not shown.

After

Width:  |  Height:  |  Size: 21 KiB

11013
output/manual_test_out.csv Normal file

File diff suppressed because it is too large Load Diff

BIN
output/mask.png Normal file

Binary file not shown.

After

Width:  |  Height:  |  Size: 17 KiB

16
output/metrics.csv Normal file
View File

@ -0,0 +1,16 @@
worker,root,class_name,normalized,use_preprocessed,n_mels,sr,hop_length,n_fft,mixup,stretch,loudness_ratio,shift_ratio,noise_ratio,mask_ratio,speed_ratio,speed_factor,mean,max,median,std
11,data,BinaryMasksDataset,True,False,64,16000,256,512,False,True,0,0,0,0,0,0,63.79,63.97,63.85,0.19
11,data,BinaryMasksDataset,True,False,64,16000,256,512,False,True,0,0,0,0,0,0,64.2,64.9,64.02,0.5
11,data,BinaryMasksDataset,True,False,64,16000,256,512,False,True,0,0,0,0,0,0,63.34,63.92,63.45,0.49
11,data,BinaryMasksDataset,True,False,64,16000,256,512,False,True,0,0,0,0,0,0,63.92,64.34,63.91,0.25
11,data,BinaryMasksDataset,True,False,64,16000,256,512,False,True,0,0,0,0,0,0,64.72,65.38,64.6,0.51
11,data,BinaryMasksDataset,True,True,64,16000,256,512,False,False,0,0,0,0,0,0,60.36,64.16,63.41,5.31
11,data,BinaryMasksDataset,True,True,64,16000,256,512,False,False,0,0,0,0,0,0,58.4,64.18,63.86,6.85
11,data,BinaryMasksDataset,True,True,64,16000,256,512,False,False,0,0,0,0,0,0,60.09,63.61,63.26,5.19
11,data,BinaryMasksDataset,True,True,64,16000,256,512,False,False,0,0,0,0,0,0,59.96,64.34,63.32,5.4
11,data,BinaryMasksDataset,True,True,64,16000,256,512,False,False,0,0,0,0,0,0,60.94,64.59,64.11,5.56
11,data,BinaryMasksDataset,True,True,64,16000,256,512,False,0,0,0.3,0,0.3,0.7,50.0,50.0,50.0,0.0
11,data,BinaryMasksDataset,True,True,64,16000,256,512,False,0,0,0.3,0,0.3,0.7,62.1,65.51,64.9,5.48
11,data,BinaryMasksDataset,True,True,64,16000,256,512,False,0,0,0.3,0,0.3,0.7,61.29,64.76,64.31,5.68
11,data,BinaryMasksDataset,True,True,64,16000,256,512,False,0,0,0.3,0,0.3,0.7,63.65,64.97,63.96,0.92
11,data,BinaryMasksDataset,True,True,64,16000,256,512,False,0,0,0.3,0,0.3,0.7,64.59,65.51,64.43,0.76
Can't render this file because it has a wrong number of fields in line 12.

BIN
output/noise.png Normal file

Binary file not shown.

After

Width:  |  Height:  |  Size: 26 KiB

View File

@ -0,0 +1,8 @@
loudness_ratio,shift_ratio,noise_ratio,mask_ratio,speed_amount,speed_min,speed_max,exp_path,exp_fingerprint,mean_decb_0.1_mean,mean_decb_0.1_std,majority_decb_0.1_mean,majority_decb_0.1_std,mean_decb_0.15_mean,mean_decb_0.15_std,majority_decb_0.15_mean,majority_decb_0.15_std,mean_decb_0.2_mean,mean_decb_0.2_std,majority_decb_0.2_mean,majority_decb_0.2_std,mean_decb_0.25_mean,mean_decb_0.25_std,majority_decb_0.25_mean,majority_decb_0.25_std,mean_decb_0.3_mean,mean_decb_0.3_std,majority_decb_0.3_mean,majority_decb_0.3_std,mean_decb_0.35000000000000003_mean,mean_decb_0.35000000000000003_std,majority_decb_0.35000000000000003_mean,majority_decb_0.35000000000000003_std,mean_decb_0.4_mean,mean_decb_0.4_std,majority_decb_0.4_mean,majority_decb_0.4_std,mean_decb_0.45_mean,mean_decb_0.45_std,majority_decb_0.45_mean,majority_decb_0.45_std,mean_decb_0.5_mean,mean_decb_0.5_std,majority_decb_0.5_mean,majority_decb_0.5_std,mean_decb_0.55_mean,mean_decb_0.55_std,majority_decb_0.55_mean,majority_decb_0.55_std,mean_decb_0.6_mean,mean_decb_0.6_std,majority_decb_0.6_mean,majority_decb_0.6_std,mean_decb_0.65_mean,mean_decb_0.65_std,majority_decb_0.65_mean,majority_decb_0.65_std,mean_decb_0.7000000000000001_mean,mean_decb_0.7000000000000001_std,majority_decb_0.7000000000000001_mean,majority_decb_0.7000000000000001_std,mean_decb_0.75_mean,mean_decb_0.75_std,majority_decb_0.75_mean,majority_decb_0.75_std,mean_decb_0.8_mean,mean_decb_0.8_std,majority_decb_0.8_mean,majority_decb_0.8_std,mean_decb_0.85_mean,mean_decb_0.85_std,majority_decb_0.85_mean,majority_decb_0.85_std,mean_decb_0.9_mean,mean_decb_0.9_std,majority_decb_0.9_mean,majority_decb_0.9_std
0.0,0.0,0.4,0.0,0.0,0.0,0.0,output/RCC/RCC_eda61b0dbeef45eb9834eb99abf3de47,eda61b0dbeef45eb9834eb99abf3de47,0.5925877364080224,0.006938692176961028,0.6054059130383656,0.005000349574576797,0.6035126188348693,0.004728260141029759,0.6119061094807641,0.004771612617469231,0.6098099529286345,0.005008956024137795,0.6159536245567923,0.004723028783171482,0.6148523779830684,0.004997228208295086,0.6189954489121384,0.0044948481276867736,0.6186538222172048,0.00502869795489423,0.621985204096152,0.004774954625505153,0.6205070300289018,0.005027883757751465,0.623291378755718,0.004327321562583568,0.6225849652375337,0.004950017601162595,0.6236365636313036,0.0036457795039575203,0.6237926423891605,0.004245521464206745,0.6243730233817768,0.003865562101022002,0.6248579763376663,0.0038746170724038623,0.6253689859651296,0.0038256712915678776,0.6255558975895085,0.0035003559632764006,0.6258166240756389,0.003538475265463362,0.6262833942208905,0.0037135461361424717,0.6262065568792188,0.0031894454050451007,0.6273253236863593,0.0036746830982040094,0.6262994361082519,0.0031116644905288416,0.6272132325373873,0.003878365784076129,0.6270689993444903,0.0026541991979802592,0.6272804667385671,0.003956873936047823,0.6267385396602559,0.0033012614217239537,0.6260879001068883,0.004465611244769408,0.6251413300708595,0.004225134164615164,0.6231868306489841,0.004918352621876367,0.6226329677824316,0.004361787090028386,0.6181800184153236,0.005610672783530799,0.6198470439074982,0.004954696486638424
0.0,0.4,0.0,0.0,0.0,0.0,0.0,output/RCC/RCC_3cb16686fdb05f9648dcaa197d86f0f0,3cb16686fdb05f9648dcaa197d86f0f0,0.5601903136059753,0.023301472469105338,0.60630128982075,0.009031391810457371,0.5912289155240547,0.014539978689266764,0.6139069958869086,0.007412225154103179,0.6061409085401712,0.010197508488928019,0.6199136991759568,0.00617441862334798,0.6156267286921651,0.007407582764683369,0.6243628507068224,0.005386048789697784,0.6219202696488167,0.006023807767133579,0.627993317123969,0.0052411106238195015,0.6266899309276874,0.005782292608949246,0.630758344911048,0.005729210044921515,0.6305298027610053,0.005410864829601481,0.6324871188409406,0.005496168089136652,0.6330042815082161,0.0052029806928775325,0.6341369596175255,0.00570288645199971,0.6348608849106937,0.005737383946614812,0.6367034444955584,0.005948269657512621,0.6356179869960433,0.006651082809640363,0.6379617970567887,0.007621735548929616,0.6373038606955547,0.007482286225428503,0.6373929214121763,0.0075943866595328735,0.6385214379726407,0.007749612447251744,0.6365836881269884,0.007878789646395677,0.6382087597934083,0.008520310354793682,0.6358668030692305,0.008794323282564099,0.6376700544380963,0.009983243894373599,0.633816384081711,0.010045663710479302,0.634780198042358,0.011735836783331111,0.6306598013516426,0.010603940283882294,0.6258786112291219,0.013735296612241604,0.6268541645544079,0.012710301203894917,0.5994669749520999,0.02756344651380324,0.6196971726993523,0.01571137750413604
0.0,0.0,0.0,0.0,0.4,0.7,1.7,output/RCC/RCC_2af7c45728a8dcfea2f07bb91ce0533b,2af7c45728a8dcfea2f07bb91ce0533b,0.5826360568020215,0.012595617839554981,0.6095929687568431,0.00834218256808553,0.6043880713093237,0.007326381632742741,0.6176269017704928,0.008486659766797773,0.61400139575416,0.00800810836848,0.6232134775311888,0.009164181248383762,0.6204205293978841,0.008675433370333751,0.6268417203203844,0.010032556399304038,0.6251738677814654,0.008872561703807246,0.628747052753139,0.009909835328050468,0.6283415714707669,0.00926429027561411,0.6313819249986645,0.010021579596668924,0.631351169197862,0.009685648338992684,0.6338471793551991,0.009601124092121308,0.6335322333762007,0.009581831429925558,0.6352763894357109,0.009438564262142768,0.6349968861690078,0.009329038783503881,0.636547057474824,0.008930826351155625,0.636303681113632,0.008863004156344424,0.6369896412019351,0.008005211678799438,0.6375303925581131,0.007993016721109783,0.6370158989962398,0.007518244427213655,0.6385391076383669,0.00715861807754437,0.6361470403399192,0.0073215616748080565,0.6385667855095245,0.007054660803734461,0.635115076787719,0.007369483134264981,0.6365988963888245,0.006531500574639648,0.6337739105322636,0.0070301009263275555,0.6333135697356228,0.006484143290302905,0.6308906432555296,0.007420907165245702,0.6264159397395697,0.009725330186215108,0.6276334719050154,0.008654142210449123,0.613726834091754,0.012521610960179504,0.6222409222503507,0.010379731718464326
0.0,0.0,0.0,0.2,0.0,0.0,0.0,output/RCC/RCC_6b738c9a057c7ccb33fe860a7e794248,6b738c9a057c7ccb33fe860a7e794248,0.5624199226087251,0.02252861628708266,0.6083682901556664,0.005250686725698862,0.596753971224713,0.00878611000090286,0.6164264189857152,0.003787465123051024,0.6114706712495581,0.005052459981180102,0.6217562587608215,0.003283601153607732,0.6200901035473801,0.0039598966713712954,0.6257062255530151,0.0040078324819995,0.6258738500713872,0.0037326679918915054,0.6290224687172388,0.003956192577819221,0.6289799613340611,0.00411760871352514,0.6308312706975496,0.0036189399515947464,0.6318803193438,0.004380888498951218,0.633570204220021,0.0031327108888365694,0.6343843349376913,0.0036621771393077784,0.6351876003287587,0.0028108068330170606,0.6353592153476719,0.0033552770975162007,0.636227058052253,0.002824122049359571,0.6366995883901133,0.003648339910669902,0.6371794747448682,0.0032754494031027666,0.6372310223128566,0.0028274285605381613,0.637397596105933,0.0034806252372786887,0.636989062269214,0.0021750612580496943,0.6367151913788046,0.0033192310294699744,0.6367300011544821,0.0028127376533105333,0.6357072225202722,0.0037938700805259557,0.6357854470448924,0.004282047942908247,0.6345909547100557,0.004725254834295211,0.6319657156794491,0.006100059991395216,0.632275490736644,0.005447795700497811,0.6244529348937902,0.011232212340717949,0.6280154255871647,0.007413008299835295,0.5965931237905145,0.027468497086935904,0.6221765000081014,0.009545952636684774
0.0,0.0,0.0,0.0,0.0,0.0,0.0,output/RCC/RCC_db8d1771763aa8f126498c42cce309d4,db8d1771763aa8f126498c42cce309d4,0.5,0.0,0.5537879661916825,0.04106878877189942,0.5,0.0,0.5649024105517932,0.041791185990728806,0.5085484519508209,0.019268680907889968,0.5749237895221674,0.041079596505959305,0.5444571477571263,0.03214712864976586,0.5840810042663207,0.0404532896781124,0.5825372218966038,0.03879166318018893,0.5923813374947319,0.03947597050677233,0.6042800251707917,0.03663602709429604,0.5988274074870211,0.038926313889480056,0.6145510341035356,0.03844421835363325,0.6046156266422282,0.038902330760594156,0.623562844631788,0.028778224857791922,0.6105838553408028,0.03973923478188655,0.6358534114907544,0.005153296519285778,0.6157933410181013,0.04047110994332178,0.6343149654521898,0.014769724043567372,0.6035978441222145,0.053715265280667605,0.6268140302314908,0.04274626943355991,0.5890295388391114,0.05815793952578842,0.6260446408630338,0.04255228259256497,0.5796769267830179,0.05400645707842501,0.6161408021518854,0.04061904693905959,0.5641904680381582,0.0507063068719739,0.5882684791471254,0.053732057055781074,0.5498795697762985,0.04484194765543798,0.5331233292480982,0.036693978952032934,0.5358991960466564,0.0404529132129205,0.5,0.0,0.5257042500390874,0.0361009375739564,0.5,0.0,0.5164261313990063,0.030936778498188232
0.4,0.0,0.0,0.0,0.0,0.0,0.0,output/RCC/RCC_c139bb7b61ed999cb7f2bfbaac9ab7e2,c139bb7b61ed999cb7f2bfbaac9ab7e2,0.5983782205435177,0.009884264679551405,0.6183956210431217,0.008550166839915607,0.6130223716520256,0.007342932744570507,0.6242103282499657,0.006872177501104398,0.6198750178237972,0.007230614285697732,0.6276664043424767,0.006420858225732456,0.6249625798941253,0.006685542446485032,0.6307023143737753,0.0057848050660980815,0.6289401634687966,0.0065633778887345924,0.6328332848947091,0.0057432831539235545,0.6315292614965042,0.005822015192498231,0.635060529295631,0.0054843609229875325,0.6333671811611684,0.005474931339230299,0.6364836154709319,0.005172056322599254,0.6351046917121231,0.005041857657333599,0.6371665991307813,0.004959844238128174,0.6367498070443556,0.004929208808637456,0.6375454175539093,0.004909028040595848,0.6379770100177541,0.004947809892656639,0.6382716566983099,0.005170085348550484,0.6387987833992019,0.004468683098999042,0.6381772822063562,0.004848158648201774,0.6389046970728899,0.004518472333979729,0.6380386259400279,0.004703188350964925,0.6392087391924257,0.004828924529631297,0.6380997146200023,0.0046603068067981104,0.6390258998334366,0.004616112524019607,0.6377271967893444,0.004623803691325905,0.6378830246137005,0.003989505785701553,0.6363657989029075,0.004277037516932451,0.6359403021494983,0.003887384997503192,0.6344168538517805,0.004360736148762412,0.6283114735480565,0.006784927171628257,0.631382177811817,0.006242860112616115
0.4,0.4,0.4,0.2,0.4,0.7,1.7,output/RCC/RCC_1153122048000b25de26fda369342ae0,1153122048000b25de26fda369342ae0,0.5132975686367033,0.016221988890468775,0.5814105323575836,0.016436566069371245,0.5503070364046805,0.02799579758367218,0.594308479526063,0.01395587863664963,0.5785190867163398,0.023253188960347296,0.6033877065817095,0.011756227977684285,0.5978159781897248,0.014112897743266326,0.6111292898491703,0.008758621576557284,0.6102343951974448,0.008414594723601775,0.616592223061424,0.0077033632311362095,0.6178160342033452,0.004731202904364016,0.6210472889163368,0.0065499035883224265,0.6237185784735597,0.0030994549398435742,0.624101159959374,0.005329038944462259,0.6271758782193217,0.004020251905364154,0.6272760223021425,0.005627471396119683,0.6304623242051057,0.004699604386425982,0.63014738668454,0.006310525897322494,0.632735057116788,0.005293424764128294,0.6323061563141653,0.00506133140573713,0.6334494046447622,0.0050696322887465416,0.6309316516164836,0.0064820507798342385,0.6324917907152199,0.0055211399319096055,0.6282236214474725,0.007604028164980533,0.6289383702810827,0.0073212656870781665,0.6243637858335389,0.010835436806515065,0.6226400991809493,0.011722212458924457,0.6190908628514775,0.014623854123354815,0.6099207038859504,0.020614209671051823,0.6144870676768216,0.01832210682604785,0.5824997247250099,0.03322203919549863,0.608232693022466,0.02210615709870419,0.5397607872552699,0.028741371303585152,0.5968847837045327,0.026674431554009028
1 loudness_ratio shift_ratio noise_ratio mask_ratio speed_amount speed_min speed_max exp_path exp_fingerprint mean_decb_0.1_mean mean_decb_0.1_std majority_decb_0.1_mean majority_decb_0.1_std mean_decb_0.15_mean mean_decb_0.15_std majority_decb_0.15_mean majority_decb_0.15_std mean_decb_0.2_mean mean_decb_0.2_std majority_decb_0.2_mean majority_decb_0.2_std mean_decb_0.25_mean mean_decb_0.25_std majority_decb_0.25_mean majority_decb_0.25_std mean_decb_0.3_mean mean_decb_0.3_std majority_decb_0.3_mean majority_decb_0.3_std mean_decb_0.35000000000000003_mean mean_decb_0.35000000000000003_std majority_decb_0.35000000000000003_mean majority_decb_0.35000000000000003_std mean_decb_0.4_mean mean_decb_0.4_std majority_decb_0.4_mean majority_decb_0.4_std mean_decb_0.45_mean mean_decb_0.45_std majority_decb_0.45_mean majority_decb_0.45_std mean_decb_0.5_mean mean_decb_0.5_std majority_decb_0.5_mean majority_decb_0.5_std mean_decb_0.55_mean mean_decb_0.55_std majority_decb_0.55_mean majority_decb_0.55_std mean_decb_0.6_mean mean_decb_0.6_std majority_decb_0.6_mean majority_decb_0.6_std mean_decb_0.65_mean mean_decb_0.65_std majority_decb_0.65_mean majority_decb_0.65_std mean_decb_0.7000000000000001_mean mean_decb_0.7000000000000001_std majority_decb_0.7000000000000001_mean majority_decb_0.7000000000000001_std mean_decb_0.75_mean mean_decb_0.75_std majority_decb_0.75_mean majority_decb_0.75_std mean_decb_0.8_mean mean_decb_0.8_std majority_decb_0.8_mean majority_decb_0.8_std mean_decb_0.85_mean mean_decb_0.85_std majority_decb_0.85_mean majority_decb_0.85_std mean_decb_0.9_mean mean_decb_0.9_std majority_decb_0.9_mean majority_decb_0.9_std
2 0.0 0.0 0.4 0.0 0.0 0.0 0.0 output/RCC/RCC_eda61b0dbeef45eb9834eb99abf3de47 eda61b0dbeef45eb9834eb99abf3de47 0.5925877364080224 0.006938692176961028 0.6054059130383656 0.005000349574576797 0.6035126188348693 0.004728260141029759 0.6119061094807641 0.004771612617469231 0.6098099529286345 0.005008956024137795 0.6159536245567923 0.004723028783171482 0.6148523779830684 0.004997228208295086 0.6189954489121384 0.0044948481276867736 0.6186538222172048 0.00502869795489423 0.621985204096152 0.004774954625505153 0.6205070300289018 0.005027883757751465 0.623291378755718 0.004327321562583568 0.6225849652375337 0.004950017601162595 0.6236365636313036 0.0036457795039575203 0.6237926423891605 0.004245521464206745 0.6243730233817768 0.003865562101022002 0.6248579763376663 0.0038746170724038623 0.6253689859651296 0.0038256712915678776 0.6255558975895085 0.0035003559632764006 0.6258166240756389 0.003538475265463362 0.6262833942208905 0.0037135461361424717 0.6262065568792188 0.0031894454050451007 0.6273253236863593 0.0036746830982040094 0.6262994361082519 0.0031116644905288416 0.6272132325373873 0.003878365784076129 0.6270689993444903 0.0026541991979802592 0.6272804667385671 0.003956873936047823 0.6267385396602559 0.0033012614217239537 0.6260879001068883 0.004465611244769408 0.6251413300708595 0.004225134164615164 0.6231868306489841 0.004918352621876367 0.6226329677824316 0.004361787090028386 0.6181800184153236 0.005610672783530799 0.6198470439074982 0.004954696486638424
3 0.0 0.4 0.0 0.0 0.0 0.0 0.0 output/RCC/RCC_3cb16686fdb05f9648dcaa197d86f0f0 3cb16686fdb05f9648dcaa197d86f0f0 0.5601903136059753 0.023301472469105338 0.60630128982075 0.009031391810457371 0.5912289155240547 0.014539978689266764 0.6139069958869086 0.007412225154103179 0.6061409085401712 0.010197508488928019 0.6199136991759568 0.00617441862334798 0.6156267286921651 0.007407582764683369 0.6243628507068224 0.005386048789697784 0.6219202696488167 0.006023807767133579 0.627993317123969 0.0052411106238195015 0.6266899309276874 0.005782292608949246 0.630758344911048 0.005729210044921515 0.6305298027610053 0.005410864829601481 0.6324871188409406 0.005496168089136652 0.6330042815082161 0.0052029806928775325 0.6341369596175255 0.00570288645199971 0.6348608849106937 0.005737383946614812 0.6367034444955584 0.005948269657512621 0.6356179869960433 0.006651082809640363 0.6379617970567887 0.007621735548929616 0.6373038606955547 0.007482286225428503 0.6373929214121763 0.0075943866595328735 0.6385214379726407 0.007749612447251744 0.6365836881269884 0.007878789646395677 0.6382087597934083 0.008520310354793682 0.6358668030692305 0.008794323282564099 0.6376700544380963 0.009983243894373599 0.633816384081711 0.010045663710479302 0.634780198042358 0.011735836783331111 0.6306598013516426 0.010603940283882294 0.6258786112291219 0.013735296612241604 0.6268541645544079 0.012710301203894917 0.5994669749520999 0.02756344651380324 0.6196971726993523 0.01571137750413604
4 0.0 0.0 0.0 0.0 0.4 0.7 1.7 output/RCC/RCC_2af7c45728a8dcfea2f07bb91ce0533b 2af7c45728a8dcfea2f07bb91ce0533b 0.5826360568020215 0.012595617839554981 0.6095929687568431 0.00834218256808553 0.6043880713093237 0.007326381632742741 0.6176269017704928 0.008486659766797773 0.61400139575416 0.00800810836848 0.6232134775311888 0.009164181248383762 0.6204205293978841 0.008675433370333751 0.6268417203203844 0.010032556399304038 0.6251738677814654 0.008872561703807246 0.628747052753139 0.009909835328050468 0.6283415714707669 0.00926429027561411 0.6313819249986645 0.010021579596668924 0.631351169197862 0.009685648338992684 0.6338471793551991 0.009601124092121308 0.6335322333762007 0.009581831429925558 0.6352763894357109 0.009438564262142768 0.6349968861690078 0.009329038783503881 0.636547057474824 0.008930826351155625 0.636303681113632 0.008863004156344424 0.6369896412019351 0.008005211678799438 0.6375303925581131 0.007993016721109783 0.6370158989962398 0.007518244427213655 0.6385391076383669 0.00715861807754437 0.6361470403399192 0.0073215616748080565 0.6385667855095245 0.007054660803734461 0.635115076787719 0.007369483134264981 0.6365988963888245 0.006531500574639648 0.6337739105322636 0.0070301009263275555 0.6333135697356228 0.006484143290302905 0.6308906432555296 0.007420907165245702 0.6264159397395697 0.009725330186215108 0.6276334719050154 0.008654142210449123 0.613726834091754 0.012521610960179504 0.6222409222503507 0.010379731718464326
5 0.0 0.0 0.0 0.2 0.0 0.0 0.0 output/RCC/RCC_6b738c9a057c7ccb33fe860a7e794248 6b738c9a057c7ccb33fe860a7e794248 0.5624199226087251 0.02252861628708266 0.6083682901556664 0.005250686725698862 0.596753971224713 0.00878611000090286 0.6164264189857152 0.003787465123051024 0.6114706712495581 0.005052459981180102 0.6217562587608215 0.003283601153607732 0.6200901035473801 0.0039598966713712954 0.6257062255530151 0.0040078324819995 0.6258738500713872 0.0037326679918915054 0.6290224687172388 0.003956192577819221 0.6289799613340611 0.00411760871352514 0.6308312706975496 0.0036189399515947464 0.6318803193438 0.004380888498951218 0.633570204220021 0.0031327108888365694 0.6343843349376913 0.0036621771393077784 0.6351876003287587 0.0028108068330170606 0.6353592153476719 0.0033552770975162007 0.636227058052253 0.002824122049359571 0.6366995883901133 0.003648339910669902 0.6371794747448682 0.0032754494031027666 0.6372310223128566 0.0028274285605381613 0.637397596105933 0.0034806252372786887 0.636989062269214 0.0021750612580496943 0.6367151913788046 0.0033192310294699744 0.6367300011544821 0.0028127376533105333 0.6357072225202722 0.0037938700805259557 0.6357854470448924 0.004282047942908247 0.6345909547100557 0.004725254834295211 0.6319657156794491 0.006100059991395216 0.632275490736644 0.005447795700497811 0.6244529348937902 0.011232212340717949 0.6280154255871647 0.007413008299835295 0.5965931237905145 0.027468497086935904 0.6221765000081014 0.009545952636684774
6 0.0 0.0 0.0 0.0 0.0 0.0 0.0 output/RCC/RCC_db8d1771763aa8f126498c42cce309d4 db8d1771763aa8f126498c42cce309d4 0.5 0.0 0.5537879661916825 0.04106878877189942 0.5 0.0 0.5649024105517932 0.041791185990728806 0.5085484519508209 0.019268680907889968 0.5749237895221674 0.041079596505959305 0.5444571477571263 0.03214712864976586 0.5840810042663207 0.0404532896781124 0.5825372218966038 0.03879166318018893 0.5923813374947319 0.03947597050677233 0.6042800251707917 0.03663602709429604 0.5988274074870211 0.038926313889480056 0.6145510341035356 0.03844421835363325 0.6046156266422282 0.038902330760594156 0.623562844631788 0.028778224857791922 0.6105838553408028 0.03973923478188655 0.6358534114907544 0.005153296519285778 0.6157933410181013 0.04047110994332178 0.6343149654521898 0.014769724043567372 0.6035978441222145 0.053715265280667605 0.6268140302314908 0.04274626943355991 0.5890295388391114 0.05815793952578842 0.6260446408630338 0.04255228259256497 0.5796769267830179 0.05400645707842501 0.6161408021518854 0.04061904693905959 0.5641904680381582 0.0507063068719739 0.5882684791471254 0.053732057055781074 0.5498795697762985 0.04484194765543798 0.5331233292480982 0.036693978952032934 0.5358991960466564 0.0404529132129205 0.5 0.0 0.5257042500390874 0.0361009375739564 0.5 0.0 0.5164261313990063 0.030936778498188232
7 0.4 0.0 0.0 0.0 0.0 0.0 0.0 output/RCC/RCC_c139bb7b61ed999cb7f2bfbaac9ab7e2 c139bb7b61ed999cb7f2bfbaac9ab7e2 0.5983782205435177 0.009884264679551405 0.6183956210431217 0.008550166839915607 0.6130223716520256 0.007342932744570507 0.6242103282499657 0.006872177501104398 0.6198750178237972 0.007230614285697732 0.6276664043424767 0.006420858225732456 0.6249625798941253 0.006685542446485032 0.6307023143737753 0.0057848050660980815 0.6289401634687966 0.0065633778887345924 0.6328332848947091 0.0057432831539235545 0.6315292614965042 0.005822015192498231 0.635060529295631 0.0054843609229875325 0.6333671811611684 0.005474931339230299 0.6364836154709319 0.005172056322599254 0.6351046917121231 0.005041857657333599 0.6371665991307813 0.004959844238128174 0.6367498070443556 0.004929208808637456 0.6375454175539093 0.004909028040595848 0.6379770100177541 0.004947809892656639 0.6382716566983099 0.005170085348550484 0.6387987833992019 0.004468683098999042 0.6381772822063562 0.004848158648201774 0.6389046970728899 0.004518472333979729 0.6380386259400279 0.004703188350964925 0.6392087391924257 0.004828924529631297 0.6380997146200023 0.0046603068067981104 0.6390258998334366 0.004616112524019607 0.6377271967893444 0.004623803691325905 0.6378830246137005 0.003989505785701553 0.6363657989029075 0.004277037516932451 0.6359403021494983 0.003887384997503192 0.6344168538517805 0.004360736148762412 0.6283114735480565 0.006784927171628257 0.631382177811817 0.006242860112616115
8 0.4 0.4 0.4 0.2 0.4 0.7 1.7 output/RCC/RCC_1153122048000b25de26fda369342ae0 1153122048000b25de26fda369342ae0 0.5132975686367033 0.016221988890468775 0.5814105323575836 0.016436566069371245 0.5503070364046805 0.02799579758367218 0.594308479526063 0.01395587863664963 0.5785190867163398 0.023253188960347296 0.6033877065817095 0.011756227977684285 0.5978159781897248 0.014112897743266326 0.6111292898491703 0.008758621576557284 0.6102343951974448 0.008414594723601775 0.616592223061424 0.0077033632311362095 0.6178160342033452 0.004731202904364016 0.6210472889163368 0.0065499035883224265 0.6237185784735597 0.0030994549398435742 0.624101159959374 0.005329038944462259 0.6271758782193217 0.004020251905364154 0.6272760223021425 0.005627471396119683 0.6304623242051057 0.004699604386425982 0.63014738668454 0.006310525897322494 0.632735057116788 0.005293424764128294 0.6323061563141653 0.00506133140573713 0.6334494046447622 0.0050696322887465416 0.6309316516164836 0.0064820507798342385 0.6324917907152199 0.0055211399319096055 0.6282236214474725 0.007604028164980533 0.6289383702810827 0.0073212656870781665 0.6243637858335389 0.010835436806515065 0.6226400991809493 0.011722212458924457 0.6190908628514775 0.014623854123354815 0.6099207038859504 0.020614209671051823 0.6144870676768216 0.01832210682604785 0.5824997247250099 0.03322203919549863 0.608232693022466 0.02210615709870419 0.5397607872552699 0.028741371303585152 0.5968847837045327 0.026674431554009028

BIN
output/raw.png Normal file

Binary file not shown.

After

Width:  |  Height:  |  Size: 18 KiB

BIN
output/rcc.pdf Normal file

Binary file not shown.

8
output/results.csv Normal file
View File

@ -0,0 +1,8 @@
loudness_ratio,shift_ratio,noise_ratio,mask_ratio,speed_amount,speed_min,speed_max,exp_path,exp_fingerprint,mean_decb_0.1_mean,mean_decb_0.1_std,majority_decb_0.1_mean,majority_decb_0.1_std,mean_decb_0.15_mean,mean_decb_0.15_std,majority_decb_0.15_mean,majority_decb_0.15_std,mean_decb_0.2_mean,mean_decb_0.2_std,majority_decb_0.2_mean,majority_decb_0.2_std,mean_decb_0.25_mean,mean_decb_0.25_std,majority_decb_0.25_mean,majority_decb_0.25_std,mean_decb_0.3_mean,mean_decb_0.3_std,majority_decb_0.3_mean,majority_decb_0.3_std,mean_decb_0.35000000000000003_mean,mean_decb_0.35000000000000003_std,majority_decb_0.35000000000000003_mean,majority_decb_0.35000000000000003_std,mean_decb_0.4_mean,mean_decb_0.4_std,majority_decb_0.4_mean,majority_decb_0.4_std,mean_decb_0.45_mean,mean_decb_0.45_std,majority_decb_0.45_mean,majority_decb_0.45_std,mean_decb_0.5_mean,mean_decb_0.5_std,majority_decb_0.5_mean,majority_decb_0.5_std,mean_decb_0.55_mean,mean_decb_0.55_std,majority_decb_0.55_mean,majority_decb_0.55_std,mean_decb_0.6_mean,mean_decb_0.6_std,majority_decb_0.6_mean,majority_decb_0.6_std,mean_decb_0.65_mean,mean_decb_0.65_std,majority_decb_0.65_mean,majority_decb_0.65_std,mean_decb_0.7000000000000001_mean,mean_decb_0.7000000000000001_std,majority_decb_0.7000000000000001_mean,majority_decb_0.7000000000000001_std,mean_decb_0.75_mean,mean_decb_0.75_std,majority_decb_0.75_mean,majority_decb_0.75_std,mean_decb_0.8_mean,mean_decb_0.8_std,majority_decb_0.8_mean,majority_decb_0.8_std,mean_decb_0.85_mean,mean_decb_0.85_std,majority_decb_0.85_mean,majority_decb_0.85_std,mean_decb_0.9_mean,mean_decb_0.9_std,majority_decb_0.9_mean,majority_decb_0.9_std
0.0,0.0,0.0,0.0,0.0,0.0,0.0,output/BCC/BCC_db8d1771763aa8f126498c42cce309d4,db8d1771763aa8f126498c42cce309d4,0.49998747024182427,2.5059516351344513e-05,0.5311949955175945,0.015112175122027827,0.5071166723864466,0.003570711297014624,0.5492620919778984,0.01851216603386002,0.5293378714515982,0.009879962150055866,0.5638004619281626,0.01942253972659972,0.553531742411179,0.014899927077776539,0.5757971809585419,0.018554233762557208,0.5754232082774748,0.0158392615728627,0.5874900683903749,0.016891075996529916,0.5949602384120131,0.01533473801319841,0.5982690917256116,0.015698837581181586,0.6115475837772977,0.013087107406046813,0.6088634872132747,0.013455978264132511,0.6254632852710154,0.010653191920014791,0.6192807856778662,0.01089874115168,0.6372496506009454,0.008131179811915431,0.6313621567018248,0.010903739879631091,0.646534199529463,0.006163372309844989,0.6430586211108267,0.008147159053007483,0.6524925252831009,0.005238623995814059,0.6476689678114534,0.00765243991104426,0.6545960773248105,0.006199612336030588,0.647929208407622,0.008051866737801753,0.6536517638106375,0.007702468341359227,0.6460285619465342,0.008419549087757138,0.6465563615627319,0.009655918108778926,0.639586622488837,0.009224189389706849,0.6279623883952109,0.012026165828036067,0.6243279671909054,0.011623022983736532,0.584630905766933,0.0165077441526688,0.6003664756902956,0.013317932476419391,0.5150911783322174,0.011563903991300705,0.5643390873982775,0.015885951694295016
0.0,0.0,0.4,0.0,0.0,0.0,0.0,output/BCC/BCC_eda61b0dbeef45eb9834eb99abf3de47,eda61b0dbeef45eb9834eb99abf3de47,0.5822832349016133,0.014277229463365937,0.614223574343401,0.007123043977676212,0.6019933386647773,0.01087559261092599,0.6207661108799766,0.006582369701223912,0.6136665724585239,0.008045625076395373,0.6255756019781905,0.005612628017794035,0.6210624755621785,0.006706298557609762,0.6295592493092187,0.0049612343822471785,0.6264034381761694,0.005703521664488483,0.6326191155013259,0.004889324894579935,0.6307692262146901,0.005080289638922534,0.6357464499112485,0.004557767212874401,0.6346350682556039,0.004524266148547106,0.638249092419579,0.004679185634818143,0.637112206709958,0.0039821643350878705,0.6399670085414757,0.004817516942879441,0.6398018379083867,0.004480682403048495,0.6414604538388935,0.005114714037223655,0.6419113540849135,0.004404764498926187,0.6430059767660765,0.005530397909719675,0.643286044868113,0.004808962693447943,0.6441961891340118,0.00528612884781965,0.6447250864667973,0.005041608762556574,0.6446017991725247,0.005366178133230501,0.64539916715641,0.004539668430481869,0.6447992142905556,0.004774407361312133,0.645656430384299,0.004498939376424698,0.6450833884917122,0.004451675740868208,0.6443659949881717,0.00374981901241002,0.643589012766707,0.004048860065531186,0.6406433072200841,0.004001505707370434,0.6416505364356759,0.0038211772856512295,0.6316921145190574,0.0066680056949816775,0.6369806414296361,0.0038874311762615438
0.4,0.0,0.0,0.0,0.0,0.0,0.0,output/BCC/BCC_c139bb7b61ed999cb7f2bfbaac9ab7e2,c139bb7b61ed999cb7f2bfbaac9ab7e2,0.5953526034848817,0.009994961530947009,0.6213078650303321,0.00591329204483482,0.6105428037478601,0.00826912741156256,0.6291588675218857,0.005729586082042761,0.6209517246048625,0.0069540219030815925,0.6340199785546778,0.005783324183232921,0.6282333928167908,0.006316000816135033,0.6384810010258011,0.0055530736750792715,0.6341372321670208,0.005565533421336869,0.6422332923682044,0.005370511654233748,0.6387102442859247,0.0057379267615629,0.6451112759440335,0.004926673673350581,0.6428876367150561,0.005291873545943229,0.6471772584475588,0.004731957811971279,0.6463076244349156,0.004599532710726014,0.6492062503456208,0.004344008756507752,0.6494991771448789,0.004511703754646507,0.6508922518614473,0.0043329070030276445,0.6519152532343824,0.004496989231629901,0.6525704960547427,0.004161995712489743,0.6534563758969557,0.003935674790074506,0.6539281196005831,0.004000697056933606,0.6553677166363423,0.004262669730173998,0.6549192242241391,0.003914594026828055,0.6572893635059535,0.00409932082129434,0.6558723504852677,0.0038505469952177023,0.6586411075013027,0.00377301934528889,0.6567613655865022,0.003719584656560209,0.6584077816377052,0.003415705707993253,0.6569675859328822,0.004009033739026109,0.6559369277987817,0.004188169286718383,0.6565178971223773,0.004311121199108305,0.6484983547220778,0.006610219271521315,0.654074583000212,0.004369127397296004
0.0,0.4,0.0,0.0,0.0,0.0,0.0,output/BCC/BCC_3cb16686fdb05f9648dcaa197d86f0f0,3cb16686fdb05f9648dcaa197d86f0f0,0.5690024628324254,0.010927333003299877,0.6287383189515544,0.011210983071878919,0.604468122855388,0.009148452718499626,0.6441459554425559,0.008713713824424095,0.627987303178382,0.008082376594374073,0.6546106530838525,0.007586574662152933,0.6447440098602017,0.006608820210232434,0.6621088082996998,0.005996089788957881,0.6567322920739638,0.006363534995890463,0.6675398654387429,0.004987676358600798,0.665151577180021,0.005230404192603345,0.6719235458817151,0.004324195591334658,0.6712674478198353,0.0034716996960555213,0.6745632977030318,0.004088170605283382,0.6762623797149794,0.003367696424914243,0.6757873193659425,0.005054862755228786,0.6793676742689932,0.003673956074037863,0.676116442617824,0.006037872342597853,0.679912942428186,0.004407342862349408,0.6755556109426253,0.00614135931317807,0.6796134697419122,0.005705103065690281,0.673469599810501,0.007519687092551546,0.6773784915141057,0.007545441632784105,0.6701527260231349,0.00850397549736509,0.6732220214879525,0.009277755800843165,0.6652025063426026,0.009688479374158034,0.6651722477096726,0.011229497924456265,0.6584605613173771,0.01011780551000107,0.6544883084349031,0.011918426401518013,0.6470116865088338,0.010894085280778626,0.6357881208494237,0.012967137635907363,0.6314928855371441,0.01122065967116801,0.606838112704893,0.011140499621092707,0.6099331847731823,0.011661629429919473
0.0,0.0,0.0,0.0,0.4,0.7,1.7,output/BCC/BCC_2af7c45728a8dcfea2f07bb91ce0533b,2af7c45728a8dcfea2f07bb91ce0533b,0.5936077293984254,0.00868807871395221,0.6269160567854806,0.011130936303142557,0.6158427890151501,0.007983391241809284,0.635995843977331,0.009098095730947305,0.6292450439129869,0.007659533059946964,0.6431906976564089,0.006793202363809304,0.6383004943145612,0.00621909168042349,0.6480246965932027,0.0057221895464368636,0.6448467384640982,0.00557737758267446,0.6515003370403447,0.004127659321033492,0.6501624404390068,0.004591849315864673,0.6546795310404364,0.003719573480123698,0.6537520291309924,0.0039007373669972803,0.6572714513651591,0.0034780252029153733,0.6577350693345239,0.0032173447139593934,0.6593395935884779,0.003312215922221381,0.6602243484591537,0.003125371825693809,0.6617596338633989,0.003120773801126948,0.6618745228739138,0.0030169744092991098,0.6629351868277918,0.0032040814077269734,0.6639818154224895,0.002777445398186179,0.6637310069185093,0.003025302773704986,0.6651338614628284,0.0026472363538318625,0.6639097984475806,0.003201896586323688,0.6657409400882451,0.002789570677155023,0.6635400474642126,0.003334167029839661,0.6647573296359833,0.003227312693467614,0.6629372046338828,0.003994880893117735,0.6617911866365186,0.0047128503364520504,0.6606628279667962,0.00488589728178858,0.6547629903950175,0.007557916066729358,0.6572753770177169,0.0067842262936338256,0.6383329089079812,0.012128510426312387,0.650401946597366,0.009125878443279034
0.4,0.4,0.4,0.2,0.4,0.7,1.7,output/BCC/BCC_1153122048000b25de26fda369342ae0,1153122048000b25de26fda369342ae0,0.5225303077858218,0.007568159447105149,0.5865186014278662,0.0184120161380992,0.562724566216802,0.012901497073023667,0.6073839701348909,0.01648127704025501,0.5941562127018365,0.014926857289822336,0.6218910034719799,0.013627611288937172,0.6148360428700432,0.012863575358821473,0.6316475047454626,0.011613506431628635,0.6304329687448134,0.010688307414604904,0.6395360711362453,0.009944167710997405,0.6417317937783003,0.008282618266259057,0.6464192719860885,0.008427952061924406,0.6507958614430545,0.0062516193420844475,0.650998707814648,0.005352543253607115,0.6564640864537524,0.00444612155082319,0.6537926145703156,0.003353268510819472,0.6578958631986491,0.003898418377417333,0.6538147249131628,0.0031009441978869035,0.6583235102735934,0.004066073278074313,0.6526691815278508,0.004476863187575506,0.6562920062210456,0.00647013527289821,0.6510962579781345,0.006263074435767392,0.6526498295738608,0.008036407827669992,0.6471688817797956,0.007860935743611026,0.6453475951529498,0.009550717987239828,0.6401940761047663,0.011552699537804668,0.6353232303558636,0.010542149569327735,0.630032102007344,0.013185635642050351,0.6201749857982917,0.011957620145608005,0.614819189912977,0.01313708163536355,0.5979462051580425,0.011662348183286715,0.5977080495294236,0.01193889674066375,0.563311664144738,0.008927272448876294,0.5765971409821097,0.010734152991207994
0.0,0.0,0.0,0.2,0.0,0.0,0.0,output/BCC/BCC_6b738c9a057c7ccb33fe860a7e794248,6b738c9a057c7ccb33fe860a7e794248,0.5766728918851037,0.012111414191176301,0.619254110600886,0.007654705960053367,0.6020821418691173,0.011080340865239754,0.6267523513408852,0.006327976103732864,0.6163851455938728,0.008784340490742249,0.6318152044499025,0.005101135945543378,0.6258596032513913,0.00671138459718275,0.6361671582519737,0.004128458886835169,0.6326851542440298,0.005253900331735938,0.6389294191917625,0.004134210503546723,0.6377766335084831,0.003699374340120643,0.6422689897733038,0.003959943184768117,0.6414004844915014,0.0028319819209817825,0.6448580577265846,0.0037535263170551205,0.6443489728624534,0.0030926918528754546,0.646690443696669,0.0037049438148316336,0.6460562153822198,0.0029605032692547194,0.6475817378755793,0.0038049288869173433,0.6478194141930168,0.00367707954524727,0.6483851526989561,0.0037019209751211857,0.6489051122879486,0.0036247132467559185,0.6495948824302301,0.003865228231370226,0.649887835544612,0.00413608853741559,0.6504804549493917,0.0039531019557641316,0.6512579935477572,0.0037483827055999333,0.6501346131355399,0.003427444327419835,0.650459772202004,0.002921437670037661,0.6492172134141118,0.0023493161281014445,0.6484262409451069,0.0024546228019007646,0.6472426101775696,0.002936534871812297,0.6421825060591513,0.0043530779605389985,0.6438633357133483,0.0036908043943732283,0.6270617974590342,0.009282636418283205,0.637010962091072,0.006823800072291407
1 loudness_ratio shift_ratio noise_ratio mask_ratio speed_amount speed_min speed_max exp_path exp_fingerprint mean_decb_0.1_mean mean_decb_0.1_std majority_decb_0.1_mean majority_decb_0.1_std mean_decb_0.15_mean mean_decb_0.15_std majority_decb_0.15_mean majority_decb_0.15_std mean_decb_0.2_mean mean_decb_0.2_std majority_decb_0.2_mean majority_decb_0.2_std mean_decb_0.25_mean mean_decb_0.25_std majority_decb_0.25_mean majority_decb_0.25_std mean_decb_0.3_mean mean_decb_0.3_std majority_decb_0.3_mean majority_decb_0.3_std mean_decb_0.35000000000000003_mean mean_decb_0.35000000000000003_std majority_decb_0.35000000000000003_mean majority_decb_0.35000000000000003_std mean_decb_0.4_mean mean_decb_0.4_std majority_decb_0.4_mean majority_decb_0.4_std mean_decb_0.45_mean mean_decb_0.45_std majority_decb_0.45_mean majority_decb_0.45_std mean_decb_0.5_mean mean_decb_0.5_std majority_decb_0.5_mean majority_decb_0.5_std mean_decb_0.55_mean mean_decb_0.55_std majority_decb_0.55_mean majority_decb_0.55_std mean_decb_0.6_mean mean_decb_0.6_std majority_decb_0.6_mean majority_decb_0.6_std mean_decb_0.65_mean mean_decb_0.65_std majority_decb_0.65_mean majority_decb_0.65_std mean_decb_0.7000000000000001_mean mean_decb_0.7000000000000001_std majority_decb_0.7000000000000001_mean majority_decb_0.7000000000000001_std mean_decb_0.75_mean mean_decb_0.75_std majority_decb_0.75_mean majority_decb_0.75_std mean_decb_0.8_mean mean_decb_0.8_std majority_decb_0.8_mean majority_decb_0.8_std mean_decb_0.85_mean mean_decb_0.85_std majority_decb_0.85_mean majority_decb_0.85_std mean_decb_0.9_mean mean_decb_0.9_std majority_decb_0.9_mean majority_decb_0.9_std
2 0.0 0.0 0.0 0.0 0.0 0.0 0.0 output/BCC/BCC_db8d1771763aa8f126498c42cce309d4 db8d1771763aa8f126498c42cce309d4 0.49998747024182427 2.5059516351344513e-05 0.5311949955175945 0.015112175122027827 0.5071166723864466 0.003570711297014624 0.5492620919778984 0.01851216603386002 0.5293378714515982 0.009879962150055866 0.5638004619281626 0.01942253972659972 0.553531742411179 0.014899927077776539 0.5757971809585419 0.018554233762557208 0.5754232082774748 0.0158392615728627 0.5874900683903749 0.016891075996529916 0.5949602384120131 0.01533473801319841 0.5982690917256116 0.015698837581181586 0.6115475837772977 0.013087107406046813 0.6088634872132747 0.013455978264132511 0.6254632852710154 0.010653191920014791 0.6192807856778662 0.01089874115168 0.6372496506009454 0.008131179811915431 0.6313621567018248 0.010903739879631091 0.646534199529463 0.006163372309844989 0.6430586211108267 0.008147159053007483 0.6524925252831009 0.005238623995814059 0.6476689678114534 0.00765243991104426 0.6545960773248105 0.006199612336030588 0.647929208407622 0.008051866737801753 0.6536517638106375 0.007702468341359227 0.6460285619465342 0.008419549087757138 0.6465563615627319 0.009655918108778926 0.639586622488837 0.009224189389706849 0.6279623883952109 0.012026165828036067 0.6243279671909054 0.011623022983736532 0.584630905766933 0.0165077441526688 0.6003664756902956 0.013317932476419391 0.5150911783322174 0.011563903991300705 0.5643390873982775 0.015885951694295016
3 0.0 0.0 0.4 0.0 0.0 0.0 0.0 output/BCC/BCC_eda61b0dbeef45eb9834eb99abf3de47 eda61b0dbeef45eb9834eb99abf3de47 0.5822832349016133 0.014277229463365937 0.614223574343401 0.007123043977676212 0.6019933386647773 0.01087559261092599 0.6207661108799766 0.006582369701223912 0.6136665724585239 0.008045625076395373 0.6255756019781905 0.005612628017794035 0.6210624755621785 0.006706298557609762 0.6295592493092187 0.0049612343822471785 0.6264034381761694 0.005703521664488483 0.6326191155013259 0.004889324894579935 0.6307692262146901 0.005080289638922534 0.6357464499112485 0.004557767212874401 0.6346350682556039 0.004524266148547106 0.638249092419579 0.004679185634818143 0.637112206709958 0.0039821643350878705 0.6399670085414757 0.004817516942879441 0.6398018379083867 0.004480682403048495 0.6414604538388935 0.005114714037223655 0.6419113540849135 0.004404764498926187 0.6430059767660765 0.005530397909719675 0.643286044868113 0.004808962693447943 0.6441961891340118 0.00528612884781965 0.6447250864667973 0.005041608762556574 0.6446017991725247 0.005366178133230501 0.64539916715641 0.004539668430481869 0.6447992142905556 0.004774407361312133 0.645656430384299 0.004498939376424698 0.6450833884917122 0.004451675740868208 0.6443659949881717 0.00374981901241002 0.643589012766707 0.004048860065531186 0.6406433072200841 0.004001505707370434 0.6416505364356759 0.0038211772856512295 0.6316921145190574 0.0066680056949816775 0.6369806414296361 0.0038874311762615438
4 0.4 0.0 0.0 0.0 0.0 0.0 0.0 output/BCC/BCC_c139bb7b61ed999cb7f2bfbaac9ab7e2 c139bb7b61ed999cb7f2bfbaac9ab7e2 0.5953526034848817 0.009994961530947009 0.6213078650303321 0.00591329204483482 0.6105428037478601 0.00826912741156256 0.6291588675218857 0.005729586082042761 0.6209517246048625 0.0069540219030815925 0.6340199785546778 0.005783324183232921 0.6282333928167908 0.006316000816135033 0.6384810010258011 0.0055530736750792715 0.6341372321670208 0.005565533421336869 0.6422332923682044 0.005370511654233748 0.6387102442859247 0.0057379267615629 0.6451112759440335 0.004926673673350581 0.6428876367150561 0.005291873545943229 0.6471772584475588 0.004731957811971279 0.6463076244349156 0.004599532710726014 0.6492062503456208 0.004344008756507752 0.6494991771448789 0.004511703754646507 0.6508922518614473 0.0043329070030276445 0.6519152532343824 0.004496989231629901 0.6525704960547427 0.004161995712489743 0.6534563758969557 0.003935674790074506 0.6539281196005831 0.004000697056933606 0.6553677166363423 0.004262669730173998 0.6549192242241391 0.003914594026828055 0.6572893635059535 0.00409932082129434 0.6558723504852677 0.0038505469952177023 0.6586411075013027 0.00377301934528889 0.6567613655865022 0.003719584656560209 0.6584077816377052 0.003415705707993253 0.6569675859328822 0.004009033739026109 0.6559369277987817 0.004188169286718383 0.6565178971223773 0.004311121199108305 0.6484983547220778 0.006610219271521315 0.654074583000212 0.004369127397296004
5 0.0 0.4 0.0 0.0 0.0 0.0 0.0 output/BCC/BCC_3cb16686fdb05f9648dcaa197d86f0f0 3cb16686fdb05f9648dcaa197d86f0f0 0.5690024628324254 0.010927333003299877 0.6287383189515544 0.011210983071878919 0.604468122855388 0.009148452718499626 0.6441459554425559 0.008713713824424095 0.627987303178382 0.008082376594374073 0.6546106530838525 0.007586574662152933 0.6447440098602017 0.006608820210232434 0.6621088082996998 0.005996089788957881 0.6567322920739638 0.006363534995890463 0.6675398654387429 0.004987676358600798 0.665151577180021 0.005230404192603345 0.6719235458817151 0.004324195591334658 0.6712674478198353 0.0034716996960555213 0.6745632977030318 0.004088170605283382 0.6762623797149794 0.003367696424914243 0.6757873193659425 0.005054862755228786 0.6793676742689932 0.003673956074037863 0.676116442617824 0.006037872342597853 0.679912942428186 0.004407342862349408 0.6755556109426253 0.00614135931317807 0.6796134697419122 0.005705103065690281 0.673469599810501 0.007519687092551546 0.6773784915141057 0.007545441632784105 0.6701527260231349 0.00850397549736509 0.6732220214879525 0.009277755800843165 0.6652025063426026 0.009688479374158034 0.6651722477096726 0.011229497924456265 0.6584605613173771 0.01011780551000107 0.6544883084349031 0.011918426401518013 0.6470116865088338 0.010894085280778626 0.6357881208494237 0.012967137635907363 0.6314928855371441 0.01122065967116801 0.606838112704893 0.011140499621092707 0.6099331847731823 0.011661629429919473
6 0.0 0.0 0.0 0.0 0.4 0.7 1.7 output/BCC/BCC_2af7c45728a8dcfea2f07bb91ce0533b 2af7c45728a8dcfea2f07bb91ce0533b 0.5936077293984254 0.00868807871395221 0.6269160567854806 0.011130936303142557 0.6158427890151501 0.007983391241809284 0.635995843977331 0.009098095730947305 0.6292450439129869 0.007659533059946964 0.6431906976564089 0.006793202363809304 0.6383004943145612 0.00621909168042349 0.6480246965932027 0.0057221895464368636 0.6448467384640982 0.00557737758267446 0.6515003370403447 0.004127659321033492 0.6501624404390068 0.004591849315864673 0.6546795310404364 0.003719573480123698 0.6537520291309924 0.0039007373669972803 0.6572714513651591 0.0034780252029153733 0.6577350693345239 0.0032173447139593934 0.6593395935884779 0.003312215922221381 0.6602243484591537 0.003125371825693809 0.6617596338633989 0.003120773801126948 0.6618745228739138 0.0030169744092991098 0.6629351868277918 0.0032040814077269734 0.6639818154224895 0.002777445398186179 0.6637310069185093 0.003025302773704986 0.6651338614628284 0.0026472363538318625 0.6639097984475806 0.003201896586323688 0.6657409400882451 0.002789570677155023 0.6635400474642126 0.003334167029839661 0.6647573296359833 0.003227312693467614 0.6629372046338828 0.003994880893117735 0.6617911866365186 0.0047128503364520504 0.6606628279667962 0.00488589728178858 0.6547629903950175 0.007557916066729358 0.6572753770177169 0.0067842262936338256 0.6383329089079812 0.012128510426312387 0.650401946597366 0.009125878443279034
7 0.4 0.4 0.4 0.2 0.4 0.7 1.7 output/BCC/BCC_1153122048000b25de26fda369342ae0 1153122048000b25de26fda369342ae0 0.5225303077858218 0.007568159447105149 0.5865186014278662 0.0184120161380992 0.562724566216802 0.012901497073023667 0.6073839701348909 0.01648127704025501 0.5941562127018365 0.014926857289822336 0.6218910034719799 0.013627611288937172 0.6148360428700432 0.012863575358821473 0.6316475047454626 0.011613506431628635 0.6304329687448134 0.010688307414604904 0.6395360711362453 0.009944167710997405 0.6417317937783003 0.008282618266259057 0.6464192719860885 0.008427952061924406 0.6507958614430545 0.0062516193420844475 0.650998707814648 0.005352543253607115 0.6564640864537524 0.00444612155082319 0.6537926145703156 0.003353268510819472 0.6578958631986491 0.003898418377417333 0.6538147249131628 0.0031009441978869035 0.6583235102735934 0.004066073278074313 0.6526691815278508 0.004476863187575506 0.6562920062210456 0.00647013527289821 0.6510962579781345 0.006263074435767392 0.6526498295738608 0.008036407827669992 0.6471688817797956 0.007860935743611026 0.6453475951529498 0.009550717987239828 0.6401940761047663 0.011552699537804668 0.6353232303558636 0.010542149569327735 0.630032102007344 0.013185635642050351 0.6201749857982917 0.011957620145608005 0.614819189912977 0.01313708163536355 0.5979462051580425 0.011662348183286715 0.5977080495294236 0.01193889674066375 0.563311664144738 0.008927272448876294 0.5765971409821097 0.010734152991207994
8 0.0 0.0 0.0 0.2 0.0 0.0 0.0 output/BCC/BCC_6b738c9a057c7ccb33fe860a7e794248 6b738c9a057c7ccb33fe860a7e794248 0.5766728918851037 0.012111414191176301 0.619254110600886 0.007654705960053367 0.6020821418691173 0.011080340865239754 0.6267523513408852 0.006327976103732864 0.6163851455938728 0.008784340490742249 0.6318152044499025 0.005101135945543378 0.6258596032513913 0.00671138459718275 0.6361671582519737 0.004128458886835169 0.6326851542440298 0.005253900331735938 0.6389294191917625 0.004134210503546723 0.6377766335084831 0.003699374340120643 0.6422689897733038 0.003959943184768117 0.6414004844915014 0.0028319819209817825 0.6448580577265846 0.0037535263170551205 0.6443489728624534 0.0030926918528754546 0.646690443696669 0.0037049438148316336 0.6460562153822198 0.0029605032692547194 0.6475817378755793 0.0038049288869173433 0.6478194141930168 0.00367707954524727 0.6483851526989561 0.0037019209751211857 0.6489051122879486 0.0036247132467559185 0.6495948824302301 0.003865228231370226 0.649887835544612 0.00413608853741559 0.6504804549493917 0.0039531019557641316 0.6512579935477572 0.0037483827055999333 0.6501346131355399 0.003427444327419835 0.650459772202004 0.002921437670037661 0.6492172134141118 0.0023493161281014445 0.6484262409451069 0.0024546228019007646 0.6472426101775696 0.002936534871812297 0.6421825060591513 0.0043530779605389985 0.6438633357133483 0.0036908043943732283 0.6270617974590342 0.009282636418283205 0.637010962091072 0.006823800072291407

View File

@ -0,0 +1,71 @@
worker,root,class_name,use_preprocessed,n_mels,sr,hop_length,n_fft,stretch,loudness_ratio,shift_ratio,noise_ratio,mask_ratio,speed_amount,speed_min,speed_max,max,,,
11,data,BinaryMasksDataset,FALSE,64,16000,256,512,FALSE,0,0,0,0,0,0,0,65.1,65.816,0.38641371,None
11,data,BinaryMasksDataset,FALSE,64,16000,256,512,FALSE,0,0,0,0,0,0,0,66.19,,,
11,data,BinaryMasksDataset,FALSE,64,16000,256,512,FALSE,0,0,0,0,0,0,0,65.78,,,
11,data,BinaryMasksDataset,FALSE,64,16000,256,512,FALSE,0,0,0,0,0,0,0,65.9,,,
11,data,BinaryMasksDataset,FALSE,64,16000,256,512,FALSE,0,0,0,0,0,0,0,66.17,,,
11,data,BinaryMasksDataset,FALSE,64,16000,256,512,FALSE,0,0,0,0,0,0,0,66.13,,,
11,data,BinaryMasksDataset,FALSE,64,16000,256,512,FALSE,0,0,0,0,0,0,0,65.18,,,
11,data,BinaryMasksDataset,FALSE,64,16000,256,512,FALSE,0,0,0,0,0,0,0,65.77,,,
11,data,BinaryMasksDataset,FALSE,64,16000,256,512,FALSE,0,0,0,0,0,0,0,66.02,,,
11,data,BinaryMasksDataset,FALSE,64,16000,256,512,FALSE,0,0,0,0,0,0,0,65.92,,,
11,data,BinaryMasksDataset,FALSE,64,16000,256,512,TRUE,0,0,0.4,0,0,0,0,65.11,64.479,0.461168805,Noise
11,data,BinaryMasksDataset,FALSE,64,16000,256,512,TRUE,0,0,0.4,0,0,0,0,64.47,,,
11,data,BinaryMasksDataset,FALSE,64,16000,256,512,TRUE,0,0,0.4,0,0,0,0,64.79,,,
11,data,BinaryMasksDataset,FALSE,64,16000,256,512,TRUE,0,0,0.4,0,0,0,0,63.56,,,
11,data,BinaryMasksDataset,FALSE,64,16000,256,512,TRUE,0,0,0.4,0,0,0,0,64.44,,,
11,data,BinaryMasksDataset,FALSE,64,16000,256,512,TRUE,0,0,0.4,0,0,0,0,64.46,,,
11,data,BinaryMasksDataset,FALSE,64,16000,256,512,TRUE,0,0,0.4,0,0,0,0,64.29,,,
11,data,BinaryMasksDataset,FALSE,64,16000,256,512,TRUE,0,0,0.4,0,0,0,0,64.48,,,
11,data,BinaryMasksDataset,FALSE,64,16000,256,512,TRUE,0,0,0.4,0,0,0,0,64.09,,,
11,data,BinaryMasksDataset,FALSE,64,16000,256,512,TRUE,0,0,0.4,0,0,0,0,65.1,,,
11,data,BinaryMasksDataset,FALSE,64,16000,256,512,TRUE,0.4,0,0,0,0,0,0,65.95,65.646,0.499893322,Loudness
11,data,BinaryMasksDataset,FALSE,64,16000,256,512,TRUE,0.4,0,0,0,0,0,0,66,,,
11,data,BinaryMasksDataset,FALSE,64,16000,256,512,TRUE,0.4,0,0,0,0,0,0,65.14,,,
11,data,BinaryMasksDataset,FALSE,64,16000,256,512,TRUE,0.4,0,0,0,0,0,0,65.84,,,
11,data,BinaryMasksDataset,FALSE,64,16000,256,512,TRUE,0.4,0,0,0,0,0,0,66.27,,,
11,data,BinaryMasksDataset,FALSE,64,16000,256,512,TRUE,0.4,0,0,0,0,0,0,65.27,,,
11,data,BinaryMasksDataset,FALSE,64,16000,256,512,TRUE,0.4,0,0,0,0,0,0,65.05,,,
11,data,BinaryMasksDataset,FALSE,64,16000,256,512,TRUE,0.4,0,0,0,0,0,0,65.43,,,
11,data,BinaryMasksDataset,FALSE,64,16000,256,512,TRUE,0.4,0,0,0,0,0,0,66.38,,,
11,data,BinaryMasksDataset,FALSE,64,16000,256,512,TRUE,0.4,0,0,0,0,0,0,65.13,,,
11,data,BinaryMasksDataset,FALSE,64,16000,256,512,TRUE,0,0.4,0,0,0,0,0,68.85,68.186,0.444727132,Shift
11,data,BinaryMasksDataset,FALSE,64,16000,256,512,TRUE,0,0.4,0,0,0,0,0,67.6,,,
11,data,BinaryMasksDataset,FALSE,64,16000,256,512,TRUE,0,0.4,0,0,0,0,0,68.03,,,
11,data,BinaryMasksDataset,FALSE,64,16000,256,512,TRUE,0,0.4,0,0,0,0,0,68.22,,,
11,data,BinaryMasksDataset,FALSE,64,16000,256,512,TRUE,0,0.4,0,0,0,0,0,68.66,,,
11,data,BinaryMasksDataset,FALSE,64,16000,256,512,TRUE,0,0.4,0,0,0,0,0,68.56,,,
11,data,BinaryMasksDataset,FALSE,64,16000,256,512,TRUE,0,0.4,0,0,0,0,0,68.28,,,
11,data,BinaryMasksDataset,FALSE,64,16000,256,512,TRUE,0,0.4,0,0,0,0,0,67.89,,,
11,data,BinaryMasksDataset,FALSE,64,16000,256,512,TRUE,0,0.4,0,0,0,0,0,68.29,,,
11,data,BinaryMasksDataset,FALSE,64,16000,256,512,TRUE,0,0.4,0,0,0,0,0,67.48,,,
11,data,BinaryMasksDataset,FALSE,64,16000,256,512,TRUE,0,0,0,0,0.4,0.7,1.7,66.07,66.394,0.342967443,Speed
11,data,BinaryMasksDataset,FALSE,64,16000,256,512,TRUE,0,0,0,0,0.4,0.7,1.7,66.46,,,
11,data,BinaryMasksDataset,FALSE,64,16000,256,512,TRUE,0,0,0,0,0.4,0.7,1.7,65.89,,,
11,data,BinaryMasksDataset,FALSE,64,16000,256,512,TRUE,0,0,0,0,0.4,0.7,1.7,67,,,
11,data,BinaryMasksDataset,FALSE,64,16000,256,512,TRUE,0,0,0,0,0.4,0.7,1.7,66.31,,,
11,data,BinaryMasksDataset,FALSE,64,16000,256,512,TRUE,0,0,0,0,0.4,0.7,1.7,66.56,,,
11,data,BinaryMasksDataset,FALSE,64,16000,256,512,TRUE,0,0,0,0,0.4,0.7,1.7,66.31,,,
11,data,BinaryMasksDataset,FALSE,64,16000,256,512,TRUE,0,0,0,0,0.4,0.7,1.7,66.71,,,
11,data,BinaryMasksDataset,FALSE,64,16000,256,512,TRUE,0,0,0,0,0.4,0.7,1.7,66.02,,,
11,data,BinaryMasksDataset,FALSE,64,16000,256,512,TRUE,0,0,0,0,0.4,0.7,1.7,66.61,,,
11,data,BinaryMasksDataset,FALSE,64,16000,256,512,TRUE,0.4,0.4,0.4,0.2,0.4,0.7,1.7,66.17,66.348,0.385625034,All
11,data,BinaryMasksDataset,FALSE,64,16000,256,512,TRUE,0.4,0.4,0.4,0.2,0.4,0.7,1.7,66.63,,,
11,data,BinaryMasksDataset,FALSE,64,16000,256,512,TRUE,0.4,0.4,0.4,0.2,0.4,0.7,1.7,66.05,,,
11,data,BinaryMasksDataset,FALSE,64,16000,256,512,TRUE,0.4,0.4,0.4,0.2,0.4,0.7,1.7,66,,,
11,data,BinaryMasksDataset,FALSE,64,16000,256,512,TRUE,0.4,0.4,0.4,0.2,0.4,0.7,1.7,66.45,,,
11,data,BinaryMasksDataset,FALSE,64,16000,256,512,TRUE,0.4,0.4,0.4,0.2,0.4,0.7,1.7,66.03,,,
11,data,BinaryMasksDataset,FALSE,64,16000,256,512,TRUE,0.4,0.4,0.4,0.2,0.4,0.7,1.7,66.71,,,
11,data,BinaryMasksDataset,FALSE,64,16000,256,512,TRUE,0.4,0.4,0.4,0.2,0.4,0.7,1.7,66.52,,,
11,data,BinaryMasksDataset,FALSE,64,16000,256,512,TRUE,0.4,0.4,0.4,0.2,0.4,0.7,1.7,65.86,,,
11,data,BinaryMasksDataset,FALSE,64,16000,256,512,TRUE,0.4,0.4,0.4,0.2,0.4,0.7,1.7,67.06,,,
11,data,BinaryMasksDataset,FALSE,64,16000,256,512,TRUE,0,0,0,0.2,0,0,0,65.14,65.083,0.323077218,Mask
11,data,BinaryMasksDataset,FALSE,64,16000,256,512,TRUE,0,0,0,0.2,0,0,0,65.31,,,
11,data,BinaryMasksDataset,FALSE,64,16000,256,512,TRUE,0,0,0,0.2,0,0,0,65.18,,,
11,data,BinaryMasksDataset,FALSE,64,16000,256,512,TRUE,0,0,0,0.2,0,0,0,65.37,,,
11,data,BinaryMasksDataset,FALSE,64,16000,256,512,TRUE,0,0,0,0.2,0,0,0,65.04,,,
11,data,BinaryMasksDataset,FALSE,64,16000,256,512,TRUE,0,0,0,0.2,0,0,0,65.18,,,
11,data,BinaryMasksDataset,FALSE,64,16000,256,512,TRUE,0,0,0,0.2,0,0,0,65.18,,,
11,data,BinaryMasksDataset,FALSE,64,16000,256,512,TRUE,0,0,0,0.2,0,0,0,64.4,,,
11,data,BinaryMasksDataset,FALSE,64,16000,256,512,TRUE,0,0,0,0.2,0,0,0,65.4,,,
11,data,BinaryMasksDataset,FALSE,64,16000,256,512,TRUE,0,0,0,0.2,0,0,0,64.63,,,
1 worker root class_name use_preprocessed n_mels sr hop_length n_fft stretch loudness_ratio shift_ratio noise_ratio mask_ratio speed_amount speed_min speed_max max
2 11 data BinaryMasksDataset FALSE 64 16000 256 512 FALSE 0 0 0 0 0 0 0 65.1 65.816 0.38641371 None
3 11 data BinaryMasksDataset FALSE 64 16000 256 512 FALSE 0 0 0 0 0 0 0 66.19
4 11 data BinaryMasksDataset FALSE 64 16000 256 512 FALSE 0 0 0 0 0 0 0 65.78
5 11 data BinaryMasksDataset FALSE 64 16000 256 512 FALSE 0 0 0 0 0 0 0 65.9
6 11 data BinaryMasksDataset FALSE 64 16000 256 512 FALSE 0 0 0 0 0 0 0 66.17
7 11 data BinaryMasksDataset FALSE 64 16000 256 512 FALSE 0 0 0 0 0 0 0 66.13
8 11 data BinaryMasksDataset FALSE 64 16000 256 512 FALSE 0 0 0 0 0 0 0 65.18
9 11 data BinaryMasksDataset FALSE 64 16000 256 512 FALSE 0 0 0 0 0 0 0 65.77
10 11 data BinaryMasksDataset FALSE 64 16000 256 512 FALSE 0 0 0 0 0 0 0 66.02
11 11 data BinaryMasksDataset FALSE 64 16000 256 512 FALSE 0 0 0 0 0 0 0 65.92
12 11 data BinaryMasksDataset FALSE 64 16000 256 512 TRUE 0 0 0.4 0 0 0 0 65.11 64.479 0.461168805 Noise
13 11 data BinaryMasksDataset FALSE 64 16000 256 512 TRUE 0 0 0.4 0 0 0 0 64.47
14 11 data BinaryMasksDataset FALSE 64 16000 256 512 TRUE 0 0 0.4 0 0 0 0 64.79
15 11 data BinaryMasksDataset FALSE 64 16000 256 512 TRUE 0 0 0.4 0 0 0 0 63.56
16 11 data BinaryMasksDataset FALSE 64 16000 256 512 TRUE 0 0 0.4 0 0 0 0 64.44
17 11 data BinaryMasksDataset FALSE 64 16000 256 512 TRUE 0 0 0.4 0 0 0 0 64.46
18 11 data BinaryMasksDataset FALSE 64 16000 256 512 TRUE 0 0 0.4 0 0 0 0 64.29
19 11 data BinaryMasksDataset FALSE 64 16000 256 512 TRUE 0 0 0.4 0 0 0 0 64.48
20 11 data BinaryMasksDataset FALSE 64 16000 256 512 TRUE 0 0 0.4 0 0 0 0 64.09
21 11 data BinaryMasksDataset FALSE 64 16000 256 512 TRUE 0 0 0.4 0 0 0 0 65.1
22 11 data BinaryMasksDataset FALSE 64 16000 256 512 TRUE 0.4 0 0 0 0 0 0 65.95 65.646 0.499893322 Loudness
23 11 data BinaryMasksDataset FALSE 64 16000 256 512 TRUE 0.4 0 0 0 0 0 0 66
24 11 data BinaryMasksDataset FALSE 64 16000 256 512 TRUE 0.4 0 0 0 0 0 0 65.14
25 11 data BinaryMasksDataset FALSE 64 16000 256 512 TRUE 0.4 0 0 0 0 0 0 65.84
26 11 data BinaryMasksDataset FALSE 64 16000 256 512 TRUE 0.4 0 0 0 0 0 0 66.27
27 11 data BinaryMasksDataset FALSE 64 16000 256 512 TRUE 0.4 0 0 0 0 0 0 65.27
28 11 data BinaryMasksDataset FALSE 64 16000 256 512 TRUE 0.4 0 0 0 0 0 0 65.05
29 11 data BinaryMasksDataset FALSE 64 16000 256 512 TRUE 0.4 0 0 0 0 0 0 65.43
30 11 data BinaryMasksDataset FALSE 64 16000 256 512 TRUE 0.4 0 0 0 0 0 0 66.38
31 11 data BinaryMasksDataset FALSE 64 16000 256 512 TRUE 0.4 0 0 0 0 0 0 65.13
32 11 data BinaryMasksDataset FALSE 64 16000 256 512 TRUE 0 0.4 0 0 0 0 0 68.85 68.186 0.444727132 Shift
33 11 data BinaryMasksDataset FALSE 64 16000 256 512 TRUE 0 0.4 0 0 0 0 0 67.6
34 11 data BinaryMasksDataset FALSE 64 16000 256 512 TRUE 0 0.4 0 0 0 0 0 68.03
35 11 data BinaryMasksDataset FALSE 64 16000 256 512 TRUE 0 0.4 0 0 0 0 0 68.22
36 11 data BinaryMasksDataset FALSE 64 16000 256 512 TRUE 0 0.4 0 0 0 0 0 68.66
37 11 data BinaryMasksDataset FALSE 64 16000 256 512 TRUE 0 0.4 0 0 0 0 0 68.56
38 11 data BinaryMasksDataset FALSE 64 16000 256 512 TRUE 0 0.4 0 0 0 0 0 68.28
39 11 data BinaryMasksDataset FALSE 64 16000 256 512 TRUE 0 0.4 0 0 0 0 0 67.89
40 11 data BinaryMasksDataset FALSE 64 16000 256 512 TRUE 0 0.4 0 0 0 0 0 68.29
41 11 data BinaryMasksDataset FALSE 64 16000 256 512 TRUE 0 0.4 0 0 0 0 0 67.48
42 11 data BinaryMasksDataset FALSE 64 16000 256 512 TRUE 0 0 0 0 0.4 0.7 1.7 66.07 66.394 0.342967443 Speed
43 11 data BinaryMasksDataset FALSE 64 16000 256 512 TRUE 0 0 0 0 0.4 0.7 1.7 66.46
44 11 data BinaryMasksDataset FALSE 64 16000 256 512 TRUE 0 0 0 0 0.4 0.7 1.7 65.89
45 11 data BinaryMasksDataset FALSE 64 16000 256 512 TRUE 0 0 0 0 0.4 0.7 1.7 67
46 11 data BinaryMasksDataset FALSE 64 16000 256 512 TRUE 0 0 0 0 0.4 0.7 1.7 66.31
47 11 data BinaryMasksDataset FALSE 64 16000 256 512 TRUE 0 0 0 0 0.4 0.7 1.7 66.56
48 11 data BinaryMasksDataset FALSE 64 16000 256 512 TRUE 0 0 0 0 0.4 0.7 1.7 66.31
49 11 data BinaryMasksDataset FALSE 64 16000 256 512 TRUE 0 0 0 0 0.4 0.7 1.7 66.71
50 11 data BinaryMasksDataset FALSE 64 16000 256 512 TRUE 0 0 0 0 0.4 0.7 1.7 66.02
51 11 data BinaryMasksDataset FALSE 64 16000 256 512 TRUE 0 0 0 0 0.4 0.7 1.7 66.61
52 11 data BinaryMasksDataset FALSE 64 16000 256 512 TRUE 0.4 0.4 0.4 0.2 0.4 0.7 1.7 66.17 66.348 0.385625034 All
53 11 data BinaryMasksDataset FALSE 64 16000 256 512 TRUE 0.4 0.4 0.4 0.2 0.4 0.7 1.7 66.63
54 11 data BinaryMasksDataset FALSE 64 16000 256 512 TRUE 0.4 0.4 0.4 0.2 0.4 0.7 1.7 66.05
55 11 data BinaryMasksDataset FALSE 64 16000 256 512 TRUE 0.4 0.4 0.4 0.2 0.4 0.7 1.7 66
56 11 data BinaryMasksDataset FALSE 64 16000 256 512 TRUE 0.4 0.4 0.4 0.2 0.4 0.7 1.7 66.45
57 11 data BinaryMasksDataset FALSE 64 16000 256 512 TRUE 0.4 0.4 0.4 0.2 0.4 0.7 1.7 66.03
58 11 data BinaryMasksDataset FALSE 64 16000 256 512 TRUE 0.4 0.4 0.4 0.2 0.4 0.7 1.7 66.71
59 11 data BinaryMasksDataset FALSE 64 16000 256 512 TRUE 0.4 0.4 0.4 0.2 0.4 0.7 1.7 66.52
60 11 data BinaryMasksDataset FALSE 64 16000 256 512 TRUE 0.4 0.4 0.4 0.2 0.4 0.7 1.7 65.86
61 11 data BinaryMasksDataset FALSE 64 16000 256 512 TRUE 0.4 0.4 0.4 0.2 0.4 0.7 1.7 67.06
62 11 data BinaryMasksDataset FALSE 64 16000 256 512 TRUE 0 0 0 0.2 0 0 0 65.14 65.083 0.323077218 Mask
63 11 data BinaryMasksDataset FALSE 64 16000 256 512 TRUE 0 0 0 0.2 0 0 0 65.31
64 11 data BinaryMasksDataset FALSE 64 16000 256 512 TRUE 0 0 0 0.2 0 0 0 65.18
65 11 data BinaryMasksDataset FALSE 64 16000 256 512 TRUE 0 0 0 0.2 0 0 0 65.37
66 11 data BinaryMasksDataset FALSE 64 16000 256 512 TRUE 0 0 0 0.2 0 0 0 65.04
67 11 data BinaryMasksDataset FALSE 64 16000 256 512 TRUE 0 0 0 0.2 0 0 0 65.18
68 11 data BinaryMasksDataset FALSE 64 16000 256 512 TRUE 0 0 0 0.2 0 0 0 65.18
69 11 data BinaryMasksDataset FALSE 64 16000 256 512 TRUE 0 0 0 0.2 0 0 0 64.4
70 11 data BinaryMasksDataset FALSE 64 16000 256 512 TRUE 0 0 0 0.2 0 0 0 65.4
71 11 data BinaryMasksDataset FALSE 64 16000 256 512 TRUE 0 0 0 0.2 0 0 0 64.63

View File

@ -0,0 +1,71 @@
worker,root,class_name,use_preprocessed,n_mels,sr,hop_length,n_fft,stretch,loudness_ratio,shift_ratio,noise_ratio,mask_ratio,speed_amount,speed_min,speed_max,max,,,
11,data,BinaryMasksDataset,FALSE,64,16000,256,512,TRUE,0,0,0.4,0,0,0,0,60.29,61.349,0.670496499,noise
11,data,BinaryMasksDataset,FALSE,64,16000,256,512,TRUE,0,0,0.4,0,0,0,0,61.95,,,
11,data,BinaryMasksDataset,FALSE,64,16000,256,512,TRUE,0,0,0.4,0,0,0,0,62.12,,,
11,data,BinaryMasksDataset,FALSE,64,16000,256,512,TRUE,0,0,0.4,0,0,0,0,61.33,,,
11,data,BinaryMasksDataset,FALSE,64,16000,256,512,TRUE,0,0,0.4,0,0,0,0,61.73,,,
11,data,BinaryMasksDataset,FALSE,64,16000,256,512,TRUE,0,0,0.4,0,0,0,0,60.74,,,
11,data,BinaryMasksDataset,FALSE,64,16000,256,512,TRUE,0,0,0.4,0,0,0,0,61.09,,,
11,data,BinaryMasksDataset,FALSE,64,16000,256,512,TRUE,0,0,0.4,0,0,0,0,60.82,,,
11,data,BinaryMasksDataset,FALSE,64,16000,256,512,TRUE,0,0,0.4,0,0,0,0,62.36,,,
11,data,BinaryMasksDataset,FALSE,64,16000,256,512,TRUE,0,0,0.4,0,0,0,0,61.06,,,
11,data,BinaryMasksDataset,FALSE,64,16000,256,512,TRUE,0,0,0,0,0.4,0.7,1.7,63.21,63.542,0.90676225,speed
11,data,BinaryMasksDataset,FALSE,64,16000,256,512,TRUE,0,0,0,0,0.4,0.7,1.7,65.9,,,
11,data,BinaryMasksDataset,FALSE,64,16000,256,512,TRUE,0,0,0,0,0.4,0.7,1.7,63.72,,,
11,data,BinaryMasksDataset,FALSE,64,16000,256,512,TRUE,0,0,0,0,0.4,0.7,1.7,63.88,,,
11,data,BinaryMasksDataset,FALSE,64,16000,256,512,TRUE,0,0,0,0,0.4,0.7,1.7,63.2,,,
11,data,BinaryMasksDataset,FALSE,64,16000,256,512,TRUE,0,0,0,0,0.4,0.7,1.7,62.72,,,
11,data,BinaryMasksDataset,FALSE,64,16000,256,512,TRUE,0,0,0,0,0.4,0.7,1.7,63.12,,,
11,data,BinaryMasksDataset,FALSE,64,16000,256,512,TRUE,0,0,0,0,0.4,0.7,1.7,62.77,,,
11,data,BinaryMasksDataset,FALSE,64,16000,256,512,TRUE,0,0,0,0,0.4,0.7,1.7,63.45,,,
11,data,BinaryMasksDataset,FALSE,64,16000,256,512,TRUE,0,0,0,0,0.4,0.7,1.7,63.45,,,
11,data,BinaryMasksDataset,FALSE,64,16000,256,512,TRUE,0.4,0.4,0.4,0.2,0.4,0.7,1.7,64.23,63.488,0.788117307,all
11,data,BinaryMasksDataset,FALSE,64,16000,256,512,TRUE,0.4,0.4,0.4,0.2,0.4,0.7,1.7,63.7,,,
11,data,BinaryMasksDataset,FALSE,64,16000,256,512,TRUE,0.4,0.4,0.4,0.2,0.4,0.7,1.7,62.52,,,
11,data,BinaryMasksDataset,FALSE,64,16000,256,512,TRUE,0.4,0.4,0.4,0.2,0.4,0.7,1.7,63.4,,,
11,data,BinaryMasksDataset,FALSE,64,16000,256,512,TRUE,0.4,0.4,0.4,0.2,0.4,0.7,1.7,62.51,,,
11,data,BinaryMasksDataset,FALSE,64,16000,256,512,TRUE,0.4,0.4,0.4,0.2,0.4,0.7,1.7,64.39,,,
11,data,BinaryMasksDataset,FALSE,64,16000,256,512,TRUE,0.4,0.4,0.4,0.2,0.4,0.7,1.7,62.34,,,
11,data,BinaryMasksDataset,FALSE,64,16000,256,512,TRUE,0.4,0.4,0.4,0.2,0.4,0.7,1.7,63.7,,,
11,data,BinaryMasksDataset,FALSE,64,16000,256,512,TRUE,0.4,0.4,0.4,0.2,0.4,0.7,1.7,63.66,,,
11,data,BinaryMasksDataset,FALSE,64,16000,256,512,TRUE,0.4,0.4,0.4,0.2,0.4,0.7,1.7,64.43,,,
11,data,BinaryMasksDataset,FALSE,64,16000,256,512,TRUE,0,0,0,0.2,0,0,0,62.61,62.268,0.334524538,mask
11,data,BinaryMasksDataset,FALSE,64,16000,256,512,TRUE,0,0,0,0.2,0,0,0,62.57,,,
11,data,BinaryMasksDataset,FALSE,64,16000,256,512,TRUE,0,0,0,0.2,0,0,0,62.74,,,
11,data,BinaryMasksDataset,FALSE,64,16000,256,512,TRUE,0,0,0,0.2,0,0,0,61.75,,,
11,data,BinaryMasksDataset,FALSE,64,16000,256,512,TRUE,0,0,0,0.2,0,0,0,62.22,,,
11,data,BinaryMasksDataset,FALSE,64,16000,256,512,TRUE,0,0,0,0.2,0,0,0,62.12,,,
11,data,BinaryMasksDataset,FALSE,64,16000,256,512,TRUE,0,0,0,0.2,0,0,0,62.49,,,
11,data,BinaryMasksDataset,FALSE,64,16000,256,512,TRUE,0,0,0,0.2,0,0,0,62.15,,,
11,data,BinaryMasksDataset,FALSE,64,16000,256,512,TRUE,0,0,0,0.2,0,0,0,61.8,,,
11,data,BinaryMasksDataset,FALSE,64,16000,256,512,TRUE,0,0,0,0.2,0,0,0,62.23,,,
11,data,BinaryMasksDataset,FALSE,64,16000,256,512,FALSE,0,0,0,0,0,0,0,63.35,63.541,0.255884088,none
11,data,BinaryMasksDataset,FALSE,64,16000,256,512,FALSE,0,0,0,0,0,0,0,63.28,,,
11,data,BinaryMasksDataset,FALSE,64,16000,256,512,FALSE,0,0,0,0,0,0,0,63.78,,,
11,data,BinaryMasksDataset,FALSE,64,16000,256,512,FALSE,0,0,0,0,0,0,0,63.47,,,
11,data,BinaryMasksDataset,FALSE,64,16000,256,512,FALSE,0,0,0,0,0,0,0,63.16,,,
11,data,BinaryMasksDataset,FALSE,64,16000,256,512,FALSE,0,0,0,0,0,0,0,63.57,,,
11,data,BinaryMasksDataset,FALSE,64,16000,256,512,FALSE,0,0,0,0,0,0,0,63.86,,,
11,data,BinaryMasksDataset,FALSE,64,16000,256,512,FALSE,0,0,0,0,0,0,0,63.9,,,
11,data,BinaryMasksDataset,FALSE,64,16000,256,512,FALSE,0,0,0,0,0,0,0,63.67,,,
11,data,BinaryMasksDataset,FALSE,64,16000,256,512,FALSE,0,0,0,0,0,0,0,63.37,,,
11,data,BinaryMasksDataset,FALSE,64,16000,256,512,TRUE,0,0.4,0,0,0,0,0,66.65,66.309,0.693468737,shift
11,data,BinaryMasksDataset,FALSE,64,16000,256,512,TRUE,0,0.4,0,0,0,0,0,66.8,,,
11,data,BinaryMasksDataset,FALSE,64,16000,256,512,TRUE,0,0.4,0,0,0,0,0,66.64,,,
11,data,BinaryMasksDataset,FALSE,64,16000,256,512,TRUE,0,0.4,0,0,0,0,0,66.75,,,
11,data,BinaryMasksDataset,FALSE,64,16000,256,512,TRUE,0,0.4,0,0,0,0,0,65.74,,,
11,data,BinaryMasksDataset,FALSE,64,16000,256,512,TRUE,0,0.4,0,0,0,0,0,66.78,,,
11,data,BinaryMasksDataset,FALSE,64,16000,256,512,TRUE,0,0.4,0,0,0,0,0,66.41,,,
11,data,BinaryMasksDataset,FALSE,64,16000,256,512,TRUE,0,0.4,0,0,0,0,0,65.6,,,
11,data,BinaryMasksDataset,FALSE,64,16000,256,512,TRUE,0,0.4,0,0,0,0,0,64.81,,,
11,data,BinaryMasksDataset,FALSE,64,16000,256,512,TRUE,0,0.4,0,0,0,0,0,66.91,,,
11,data,BinaryMasksDataset,FALSE,64,16000,256,512,TRUE,0.4,0,0,0,0,0,0,61.44,62.869,0.640979286,loudness
11,data,BinaryMasksDataset,FALSE,64,16000,256,512,TRUE,0.4,0,0,0,0,0,0,63.03,,,
11,data,BinaryMasksDataset,FALSE,64,16000,256,512,TRUE,0.4,0,0,0,0,0,0,63.33,,,
11,data,BinaryMasksDataset,FALSE,64,16000,256,512,TRUE,0.4,0,0,0,0,0,0,62.98,,,
11,data,BinaryMasksDataset,FALSE,64,16000,256,512,TRUE,0.4,0,0,0,0,0,0,62.46,,,
11,data,BinaryMasksDataset,FALSE,64,16000,256,512,TRUE,0.4,0,0,0,0,0,0,62.56,,,
11,data,BinaryMasksDataset,FALSE,64,16000,256,512,TRUE,0.4,0,0,0,0,0,0,63.13,,,
11,data,BinaryMasksDataset,FALSE,64,16000,256,512,TRUE,0.4,0,0,0,0,0,0,63.72,,,
11,data,BinaryMasksDataset,FALSE,64,16000,256,512,TRUE,0.4,0,0,0,0,0,0,63.41,,,
11,data,BinaryMasksDataset,FALSE,64,16000,256,512,TRUE,0.4,0,0,0,0,0,0,62.63,,,
1 worker root class_name use_preprocessed n_mels sr hop_length n_fft stretch loudness_ratio shift_ratio noise_ratio mask_ratio speed_amount speed_min speed_max max
2 11 data BinaryMasksDataset FALSE 64 16000 256 512 TRUE 0 0 0.4 0 0 0 0 60.29 61.349 0.670496499 noise
3 11 data BinaryMasksDataset FALSE 64 16000 256 512 TRUE 0 0 0.4 0 0 0 0 61.95
4 11 data BinaryMasksDataset FALSE 64 16000 256 512 TRUE 0 0 0.4 0 0 0 0 62.12
5 11 data BinaryMasksDataset FALSE 64 16000 256 512 TRUE 0 0 0.4 0 0 0 0 61.33
6 11 data BinaryMasksDataset FALSE 64 16000 256 512 TRUE 0 0 0.4 0 0 0 0 61.73
7 11 data BinaryMasksDataset FALSE 64 16000 256 512 TRUE 0 0 0.4 0 0 0 0 60.74
8 11 data BinaryMasksDataset FALSE 64 16000 256 512 TRUE 0 0 0.4 0 0 0 0 61.09
9 11 data BinaryMasksDataset FALSE 64 16000 256 512 TRUE 0 0 0.4 0 0 0 0 60.82
10 11 data BinaryMasksDataset FALSE 64 16000 256 512 TRUE 0 0 0.4 0 0 0 0 62.36
11 11 data BinaryMasksDataset FALSE 64 16000 256 512 TRUE 0 0 0.4 0 0 0 0 61.06
12 11 data BinaryMasksDataset FALSE 64 16000 256 512 TRUE 0 0 0 0 0.4 0.7 1.7 63.21 63.542 0.90676225 speed
13 11 data BinaryMasksDataset FALSE 64 16000 256 512 TRUE 0 0 0 0 0.4 0.7 1.7 65.9
14 11 data BinaryMasksDataset FALSE 64 16000 256 512 TRUE 0 0 0 0 0.4 0.7 1.7 63.72
15 11 data BinaryMasksDataset FALSE 64 16000 256 512 TRUE 0 0 0 0 0.4 0.7 1.7 63.88
16 11 data BinaryMasksDataset FALSE 64 16000 256 512 TRUE 0 0 0 0 0.4 0.7 1.7 63.2
17 11 data BinaryMasksDataset FALSE 64 16000 256 512 TRUE 0 0 0 0 0.4 0.7 1.7 62.72
18 11 data BinaryMasksDataset FALSE 64 16000 256 512 TRUE 0 0 0 0 0.4 0.7 1.7 63.12
19 11 data BinaryMasksDataset FALSE 64 16000 256 512 TRUE 0 0 0 0 0.4 0.7 1.7 62.77
20 11 data BinaryMasksDataset FALSE 64 16000 256 512 TRUE 0 0 0 0 0.4 0.7 1.7 63.45
21 11 data BinaryMasksDataset FALSE 64 16000 256 512 TRUE 0 0 0 0 0.4 0.7 1.7 63.45
22 11 data BinaryMasksDataset FALSE 64 16000 256 512 TRUE 0.4 0.4 0.4 0.2 0.4 0.7 1.7 64.23 63.488 0.788117307 all
23 11 data BinaryMasksDataset FALSE 64 16000 256 512 TRUE 0.4 0.4 0.4 0.2 0.4 0.7 1.7 63.7
24 11 data BinaryMasksDataset FALSE 64 16000 256 512 TRUE 0.4 0.4 0.4 0.2 0.4 0.7 1.7 62.52
25 11 data BinaryMasksDataset FALSE 64 16000 256 512 TRUE 0.4 0.4 0.4 0.2 0.4 0.7 1.7 63.4
26 11 data BinaryMasksDataset FALSE 64 16000 256 512 TRUE 0.4 0.4 0.4 0.2 0.4 0.7 1.7 62.51
27 11 data BinaryMasksDataset FALSE 64 16000 256 512 TRUE 0.4 0.4 0.4 0.2 0.4 0.7 1.7 64.39
28 11 data BinaryMasksDataset FALSE 64 16000 256 512 TRUE 0.4 0.4 0.4 0.2 0.4 0.7 1.7 62.34
29 11 data BinaryMasksDataset FALSE 64 16000 256 512 TRUE 0.4 0.4 0.4 0.2 0.4 0.7 1.7 63.7
30 11 data BinaryMasksDataset FALSE 64 16000 256 512 TRUE 0.4 0.4 0.4 0.2 0.4 0.7 1.7 63.66
31 11 data BinaryMasksDataset FALSE 64 16000 256 512 TRUE 0.4 0.4 0.4 0.2 0.4 0.7 1.7 64.43
32 11 data BinaryMasksDataset FALSE 64 16000 256 512 TRUE 0 0 0 0.2 0 0 0 62.61 62.268 0.334524538 mask
33 11 data BinaryMasksDataset FALSE 64 16000 256 512 TRUE 0 0 0 0.2 0 0 0 62.57
34 11 data BinaryMasksDataset FALSE 64 16000 256 512 TRUE 0 0 0 0.2 0 0 0 62.74
35 11 data BinaryMasksDataset FALSE 64 16000 256 512 TRUE 0 0 0 0.2 0 0 0 61.75
36 11 data BinaryMasksDataset FALSE 64 16000 256 512 TRUE 0 0 0 0.2 0 0 0 62.22
37 11 data BinaryMasksDataset FALSE 64 16000 256 512 TRUE 0 0 0 0.2 0 0 0 62.12
38 11 data BinaryMasksDataset FALSE 64 16000 256 512 TRUE 0 0 0 0.2 0 0 0 62.49
39 11 data BinaryMasksDataset FALSE 64 16000 256 512 TRUE 0 0 0 0.2 0 0 0 62.15
40 11 data BinaryMasksDataset FALSE 64 16000 256 512 TRUE 0 0 0 0.2 0 0 0 61.8
41 11 data BinaryMasksDataset FALSE 64 16000 256 512 TRUE 0 0 0 0.2 0 0 0 62.23
42 11 data BinaryMasksDataset FALSE 64 16000 256 512 FALSE 0 0 0 0 0 0 0 63.35 63.541 0.255884088 none
43 11 data BinaryMasksDataset FALSE 64 16000 256 512 FALSE 0 0 0 0 0 0 0 63.28
44 11 data BinaryMasksDataset FALSE 64 16000 256 512 FALSE 0 0 0 0 0 0 0 63.78
45 11 data BinaryMasksDataset FALSE 64 16000 256 512 FALSE 0 0 0 0 0 0 0 63.47
46 11 data BinaryMasksDataset FALSE 64 16000 256 512 FALSE 0 0 0 0 0 0 0 63.16
47 11 data BinaryMasksDataset FALSE 64 16000 256 512 FALSE 0 0 0 0 0 0 0 63.57
48 11 data BinaryMasksDataset FALSE 64 16000 256 512 FALSE 0 0 0 0 0 0 0 63.86
49 11 data BinaryMasksDataset FALSE 64 16000 256 512 FALSE 0 0 0 0 0 0 0 63.9
50 11 data BinaryMasksDataset FALSE 64 16000 256 512 FALSE 0 0 0 0 0 0 0 63.67
51 11 data BinaryMasksDataset FALSE 64 16000 256 512 FALSE 0 0 0 0 0 0 0 63.37
52 11 data BinaryMasksDataset FALSE 64 16000 256 512 TRUE 0 0.4 0 0 0 0 0 66.65 66.309 0.693468737 shift
53 11 data BinaryMasksDataset FALSE 64 16000 256 512 TRUE 0 0.4 0 0 0 0 0 66.8
54 11 data BinaryMasksDataset FALSE 64 16000 256 512 TRUE 0 0.4 0 0 0 0 0 66.64
55 11 data BinaryMasksDataset FALSE 64 16000 256 512 TRUE 0 0.4 0 0 0 0 0 66.75
56 11 data BinaryMasksDataset FALSE 64 16000 256 512 TRUE 0 0.4 0 0 0 0 0 65.74
57 11 data BinaryMasksDataset FALSE 64 16000 256 512 TRUE 0 0.4 0 0 0 0 0 66.78
58 11 data BinaryMasksDataset FALSE 64 16000 256 512 TRUE 0 0.4 0 0 0 0 0 66.41
59 11 data BinaryMasksDataset FALSE 64 16000 256 512 TRUE 0 0.4 0 0 0 0 0 65.6
60 11 data BinaryMasksDataset FALSE 64 16000 256 512 TRUE 0 0.4 0 0 0 0 0 64.81
61 11 data BinaryMasksDataset FALSE 64 16000 256 512 TRUE 0 0.4 0 0 0 0 0 66.91
62 11 data BinaryMasksDataset FALSE 64 16000 256 512 TRUE 0.4 0 0 0 0 0 0 61.44 62.869 0.640979286 loudness
63 11 data BinaryMasksDataset FALSE 64 16000 256 512 TRUE 0.4 0 0 0 0 0 0 63.03
64 11 data BinaryMasksDataset FALSE 64 16000 256 512 TRUE 0.4 0 0 0 0 0 0 63.33
65 11 data BinaryMasksDataset FALSE 64 16000 256 512 TRUE 0.4 0 0 0 0 0 0 62.98
66 11 data BinaryMasksDataset FALSE 64 16000 256 512 TRUE 0.4 0 0 0 0 0 0 62.46
67 11 data BinaryMasksDataset FALSE 64 16000 256 512 TRUE 0.4 0 0 0 0 0 0 62.56
68 11 data BinaryMasksDataset FALSE 64 16000 256 512 TRUE 0.4 0 0 0 0 0 0 63.13
69 11 data BinaryMasksDataset FALSE 64 16000 256 512 TRUE 0.4 0 0 0 0 0 0 63.72
70 11 data BinaryMasksDataset FALSE 64 16000 256 512 TRUE 0.4 0 0 0 0 0 0 63.41
71 11 data BinaryMasksDataset FALSE 64 16000 256 512 TRUE 0.4 0 0 0 0 0 0 62.63

View File

@ -0,0 +1,71 @@
worker,root,class_name,use_preprocessed,n_mels,sr,hop_length,n_fft,stretch,loudness_ratio,shift_ratio,noise_ratio,mask_ratio,speed_amount,speed_min,speed_max,max,,,
11,data,BinaryMasksDataset,FALSE,64,16000,256,512,FALSE,0,0,0,0,0,0,0,64.84,64.714,0.302294926,None
11,data,BinaryMasksDataset,FALSE,64,16000,256,512,FALSE,0,0,0,0,0,0,0,64.67,,,
11,data,BinaryMasksDataset,FALSE,64,16000,256,512,FALSE,0,0,0,0,0,0,0,64.45,,,
11,data,BinaryMasksDataset,FALSE,64,16000,256,512,FALSE,0,0,0,0,0,0,0,64.88,,,
11,data,BinaryMasksDataset,FALSE,64,16000,256,512,FALSE,0,0,0,0,0,0,0,64.19,,,
11,data,BinaryMasksDataset,FALSE,64,16000,256,512,FALSE,0,0,0,0,0,0,0,65.08,,,
11,data,BinaryMasksDataset,FALSE,64,16000,256,512,FALSE,0,0,0,0,0,0,0,64.87,,,
11,data,BinaryMasksDataset,FALSE,64,16000,256,512,FALSE,0,0,0,0,0,0,0,64.58,,,
11,data,BinaryMasksDataset,FALSE,64,16000,256,512,FALSE,0,0,0,0,0,0,0,64.44,,,
11,data,BinaryMasksDataset,FALSE,64,16000,256,512,FALSE,0,0,0,0,0,0,0,65.14,,,
11,data,BinaryMasksDataset,FALSE,64,16000,256,512,TRUE,0,0,0,0,0.4,0.7,1.7,64.6,64.784,0.403517864,Speed
11,data,BinaryMasksDataset,FALSE,64,16000,256,512,TRUE,0,0,0,0,0.4,0.7,1.7,64.95,,,
11,data,BinaryMasksDataset,FALSE,64,16000,256,512,TRUE,0,0,0,0,0.4,0.7,1.7,64.86,,,
11,data,BinaryMasksDataset,FALSE,64,16000,256,512,TRUE,0,0,0,0,0.4,0.7,1.7,64.69,,,
11,data,BinaryMasksDataset,FALSE,64,16000,256,512,TRUE,0,0,0,0,0.4,0.7,1.7,64.79,,,
11,data,BinaryMasksDataset,FALSE,64,16000,256,512,TRUE,0,0,0,0,0.4,0.7,1.7,65.1,,,
11,data,BinaryMasksDataset,FALSE,64,16000,256,512,TRUE,0,0,0,0,0.4,0.7,1.7,63.91,,,
11,data,BinaryMasksDataset,FALSE,64,16000,256,512,TRUE,0,0,0,0,0.4,0.7,1.7,65.4,,,
11,data,BinaryMasksDataset,FALSE,64,16000,256,512,TRUE,0,0,0,0,0.4,0.7,1.7,64.5,,,
11,data,BinaryMasksDataset,FALSE,64,16000,256,512,TRUE,0,0,0,0,0.4,0.7,1.7,65.04,,,
11,data,BinaryMasksDataset,FALSE,64,16000,256,512,TRUE,0.4,0.4,0.4,0.2,0.4,0.7,1.7,65.17,65.029,0.406760918,All
11,data,BinaryMasksDataset,FALSE,64,16000,256,512,TRUE,0.4,0.4,0.4,0.2,0.4,0.7,1.7,64.34,,,
11,data,BinaryMasksDataset,FALSE,64,16000,256,512,TRUE,0.4,0.4,0.4,0.2,0.4,0.7,1.7,65.33,,,
11,data,BinaryMasksDataset,FALSE,64,16000,256,512,TRUE,0.4,0.4,0.4,0.2,0.4,0.7,1.7,65.27,,,
11,data,BinaryMasksDataset,FALSE,64,16000,256,512,TRUE,0.4,0.4,0.4,0.2,0.4,0.7,1.7,65.21,,,
11,data,BinaryMasksDataset,FALSE,64,16000,256,512,TRUE,0.4,0.4,0.4,0.2,0.4,0.7,1.7,65.29,,,
11,data,BinaryMasksDataset,FALSE,64,16000,256,512,TRUE,0.4,0.4,0.4,0.2,0.4,0.7,1.7,65.37,,,
11,data,BinaryMasksDataset,FALSE,64,16000,256,512,TRUE,0.4,0.4,0.4,0.2,0.4,0.7,1.7,65.09,,,
11,data,BinaryMasksDataset,FALSE,64,16000,256,512,TRUE,0.4,0.4,0.4,0.2,0.4,0.7,1.7,64.98,,,
11,data,BinaryMasksDataset,FALSE,64,16000,256,512,TRUE,0.4,0.4,0.4,0.2,0.4,0.7,1.7,64.24,,,
11,data,BinaryMasksDataset,FALSE,64,16000,256,512,TRUE,0,0,0.4,0,0,0,0,63.77,63.618,0.224192378,noise
11,data,BinaryMasksDataset,FALSE,64,16000,256,512,TRUE,0,0,0.4,0,0,0,0,63.65,,,
11,data,BinaryMasksDataset,FALSE,64,16000,256,512,TRUE,0,0,0.4,0,0,0,0,63.57,,,
11,data,BinaryMasksDataset,FALSE,64,16000,256,512,TRUE,0,0,0.4,0,0,0,0,63.37,,,
11,data,BinaryMasksDataset,FALSE,64,16000,256,512,TRUE,0,0,0.4,0,0,0,0,63.98,,,
11,data,BinaryMasksDataset,FALSE,64,16000,256,512,TRUE,0,0,0.4,0,0,0,0,63.19,,,
11,data,BinaryMasksDataset,FALSE,64,16000,256,512,TRUE,0,0,0.4,0,0,0,0,63.61,,,
11,data,BinaryMasksDataset,FALSE,64,16000,256,512,TRUE,0,0,0.4,0,0,0,0,63.77,,,
11,data,BinaryMasksDataset,FALSE,64,16000,256,512,TRUE,0,0,0.4,0,0,0,0,63.52,,,
11,data,BinaryMasksDataset,FALSE,64,16000,256,512,TRUE,0,0,0.4,0,0,0,0,63.75,,,
11,data,BinaryMasksDataset,FALSE,64,16000,256,512,TRUE,0.4,0,0,0,0,0,0,64.77,64.305,0.435488232,loudness
11,data,BinaryMasksDataset,FALSE,64,16000,256,512,TRUE,0.4,0,0,0,0,0,0,65.03,,,
11,data,BinaryMasksDataset,FALSE,64,16000,256,512,TRUE,0.4,0,0,0,0,0,0,63.83,,,
11,data,BinaryMasksDataset,FALSE,64,16000,256,512,TRUE,0.4,0,0,0,0,0,0,63.97,,,
11,data,BinaryMasksDataset,FALSE,64,16000,256,512,TRUE,0.4,0,0,0,0,0,0,64.72,,,
11,data,BinaryMasksDataset,FALSE,64,16000,256,512,TRUE,0.4,0,0,0,0,0,0,64.43,,,
11,data,BinaryMasksDataset,FALSE,64,16000,256,512,TRUE,0.4,0,0,0,0,0,0,64.11,,,
11,data,BinaryMasksDataset,FALSE,64,16000,256,512,TRUE,0.4,0,0,0,0,0,0,64.45,,,
11,data,BinaryMasksDataset,FALSE,64,16000,256,512,TRUE,0.4,0,0,0,0,0,0,63.84,,,
11,data,BinaryMasksDataset,FALSE,64,16000,256,512,TRUE,0.4,0,0,0,0,0,0,63.9,,,
11,data,BinaryMasksDataset,FALSE,64,16000,256,512,TRUE,0,0,0,0.2,0,0,0,64.18,64.268,0.335949732,mask
11,data,BinaryMasksDataset,FALSE,64,16000,256,512,TRUE,0,0,0,0.2,0,0,0,64.3,,,
11,data,BinaryMasksDataset,FALSE,64,16000,256,512,TRUE,0,0,0,0.2,0,0,0,64.51,,,
11,data,BinaryMasksDataset,FALSE,64,16000,256,512,TRUE,0,0,0,0.2,0,0,0,65,,,
11,data,BinaryMasksDataset,FALSE,64,16000,256,512,TRUE,0,0,0,0.2,0,0,0,64.13,,,
11,data,BinaryMasksDataset,FALSE,64,16000,256,512,TRUE,0,0,0,0.2,0,0,0,63.71,,,
11,data,BinaryMasksDataset,FALSE,64,16000,256,512,TRUE,0,0,0,0.2,0,0,0,64.01,,,
11,data,BinaryMasksDataset,FALSE,64,16000,256,512,TRUE,0,0,0,0.2,0,0,0,64.24,,,
11,data,BinaryMasksDataset,FALSE,64,16000,256,512,TRUE,0,0,0,0.2,0,0,0,64.38,,,
11,data,BinaryMasksDataset,FALSE,64,16000,256,512,TRUE,0,0,0,0.2,0,0,0,64.22,,,
11,data,BinaryMasksDataset,FALSE,64,16000,256,512,TRUE,0,0.4,0,0,0,0,0,66.1,65.394,0.54946843,shift
11,data,BinaryMasksDataset,FALSE,64,16000,256,512,TRUE,0,0.4,0,0,0,0,0,66.07,,,
11,data,BinaryMasksDataset,FALSE,64,16000,256,512,TRUE,0,0.4,0,0,0,0,0,65.32,,,
11,data,BinaryMasksDataset,FALSE,64,16000,256,512,TRUE,0,0.4,0,0,0,0,0,65.86,,,
11,data,BinaryMasksDataset,FALSE,64,16000,256,512,TRUE,0,0.4,0,0,0,0,0,65.21,,,
11,data,BinaryMasksDataset,FALSE,64,16000,256,512,TRUE,0,0.4,0,0,0,0,0,65.24,,,
11,data,BinaryMasksDataset,FALSE,64,16000,256,512,TRUE,0,0.4,0,0,0,0,0,64.23,,,
11,data,BinaryMasksDataset,FALSE,64,16000,256,512,TRUE,0,0.4,0,0,0,0,0,65.54,,,
11,data,BinaryMasksDataset,FALSE,64,16000,256,512,TRUE,0,0.4,0,0,0,0,0,65.28,,,
11,data,BinaryMasksDataset,FALSE,64,16000,256,512,TRUE,0,0.4,0,0,0,0,0,65.09,,,
1 worker root class_name use_preprocessed n_mels sr hop_length n_fft stretch loudness_ratio shift_ratio noise_ratio mask_ratio speed_amount speed_min speed_max max
2 11 data BinaryMasksDataset FALSE 64 16000 256 512 FALSE 0 0 0 0 0 0 0 64.84 64.714 0.302294926 None
3 11 data BinaryMasksDataset FALSE 64 16000 256 512 FALSE 0 0 0 0 0 0 0 64.67
4 11 data BinaryMasksDataset FALSE 64 16000 256 512 FALSE 0 0 0 0 0 0 0 64.45
5 11 data BinaryMasksDataset FALSE 64 16000 256 512 FALSE 0 0 0 0 0 0 0 64.88
6 11 data BinaryMasksDataset FALSE 64 16000 256 512 FALSE 0 0 0 0 0 0 0 64.19
7 11 data BinaryMasksDataset FALSE 64 16000 256 512 FALSE 0 0 0 0 0 0 0 65.08
8 11 data BinaryMasksDataset FALSE 64 16000 256 512 FALSE 0 0 0 0 0 0 0 64.87
9 11 data BinaryMasksDataset FALSE 64 16000 256 512 FALSE 0 0 0 0 0 0 0 64.58
10 11 data BinaryMasksDataset FALSE 64 16000 256 512 FALSE 0 0 0 0 0 0 0 64.44
11 11 data BinaryMasksDataset FALSE 64 16000 256 512 FALSE 0 0 0 0 0 0 0 65.14
12 11 data BinaryMasksDataset FALSE 64 16000 256 512 TRUE 0 0 0 0 0.4 0.7 1.7 64.6 64.784 0.403517864 Speed
13 11 data BinaryMasksDataset FALSE 64 16000 256 512 TRUE 0 0 0 0 0.4 0.7 1.7 64.95
14 11 data BinaryMasksDataset FALSE 64 16000 256 512 TRUE 0 0 0 0 0.4 0.7 1.7 64.86
15 11 data BinaryMasksDataset FALSE 64 16000 256 512 TRUE 0 0 0 0 0.4 0.7 1.7 64.69
16 11 data BinaryMasksDataset FALSE 64 16000 256 512 TRUE 0 0 0 0 0.4 0.7 1.7 64.79
17 11 data BinaryMasksDataset FALSE 64 16000 256 512 TRUE 0 0 0 0 0.4 0.7 1.7 65.1
18 11 data BinaryMasksDataset FALSE 64 16000 256 512 TRUE 0 0 0 0 0.4 0.7 1.7 63.91
19 11 data BinaryMasksDataset FALSE 64 16000 256 512 TRUE 0 0 0 0 0.4 0.7 1.7 65.4
20 11 data BinaryMasksDataset FALSE 64 16000 256 512 TRUE 0 0 0 0 0.4 0.7 1.7 64.5
21 11 data BinaryMasksDataset FALSE 64 16000 256 512 TRUE 0 0 0 0 0.4 0.7 1.7 65.04
22 11 data BinaryMasksDataset FALSE 64 16000 256 512 TRUE 0.4 0.4 0.4 0.2 0.4 0.7 1.7 65.17 65.029 0.406760918 All
23 11 data BinaryMasksDataset FALSE 64 16000 256 512 TRUE 0.4 0.4 0.4 0.2 0.4 0.7 1.7 64.34
24 11 data BinaryMasksDataset FALSE 64 16000 256 512 TRUE 0.4 0.4 0.4 0.2 0.4 0.7 1.7 65.33
25 11 data BinaryMasksDataset FALSE 64 16000 256 512 TRUE 0.4 0.4 0.4 0.2 0.4 0.7 1.7 65.27
26 11 data BinaryMasksDataset FALSE 64 16000 256 512 TRUE 0.4 0.4 0.4 0.2 0.4 0.7 1.7 65.21
27 11 data BinaryMasksDataset FALSE 64 16000 256 512 TRUE 0.4 0.4 0.4 0.2 0.4 0.7 1.7 65.29
28 11 data BinaryMasksDataset FALSE 64 16000 256 512 TRUE 0.4 0.4 0.4 0.2 0.4 0.7 1.7 65.37
29 11 data BinaryMasksDataset FALSE 64 16000 256 512 TRUE 0.4 0.4 0.4 0.2 0.4 0.7 1.7 65.09
30 11 data BinaryMasksDataset FALSE 64 16000 256 512 TRUE 0.4 0.4 0.4 0.2 0.4 0.7 1.7 64.98
31 11 data BinaryMasksDataset FALSE 64 16000 256 512 TRUE 0.4 0.4 0.4 0.2 0.4 0.7 1.7 64.24
32 11 data BinaryMasksDataset FALSE 64 16000 256 512 TRUE 0 0 0.4 0 0 0 0 63.77 63.618 0.224192378 noise
33 11 data BinaryMasksDataset FALSE 64 16000 256 512 TRUE 0 0 0.4 0 0 0 0 63.65
34 11 data BinaryMasksDataset FALSE 64 16000 256 512 TRUE 0 0 0.4 0 0 0 0 63.57
35 11 data BinaryMasksDataset FALSE 64 16000 256 512 TRUE 0 0 0.4 0 0 0 0 63.37
36 11 data BinaryMasksDataset FALSE 64 16000 256 512 TRUE 0 0 0.4 0 0 0 0 63.98
37 11 data BinaryMasksDataset FALSE 64 16000 256 512 TRUE 0 0 0.4 0 0 0 0 63.19
38 11 data BinaryMasksDataset FALSE 64 16000 256 512 TRUE 0 0 0.4 0 0 0 0 63.61
39 11 data BinaryMasksDataset FALSE 64 16000 256 512 TRUE 0 0 0.4 0 0 0 0 63.77
40 11 data BinaryMasksDataset FALSE 64 16000 256 512 TRUE 0 0 0.4 0 0 0 0 63.52
41 11 data BinaryMasksDataset FALSE 64 16000 256 512 TRUE 0 0 0.4 0 0 0 0 63.75
42 11 data BinaryMasksDataset FALSE 64 16000 256 512 TRUE 0.4 0 0 0 0 0 0 64.77 64.305 0.435488232 loudness
43 11 data BinaryMasksDataset FALSE 64 16000 256 512 TRUE 0.4 0 0 0 0 0 0 65.03
44 11 data BinaryMasksDataset FALSE 64 16000 256 512 TRUE 0.4 0 0 0 0 0 0 63.83
45 11 data BinaryMasksDataset FALSE 64 16000 256 512 TRUE 0.4 0 0 0 0 0 0 63.97
46 11 data BinaryMasksDataset FALSE 64 16000 256 512 TRUE 0.4 0 0 0 0 0 0 64.72
47 11 data BinaryMasksDataset FALSE 64 16000 256 512 TRUE 0.4 0 0 0 0 0 0 64.43
48 11 data BinaryMasksDataset FALSE 64 16000 256 512 TRUE 0.4 0 0 0 0 0 0 64.11
49 11 data BinaryMasksDataset FALSE 64 16000 256 512 TRUE 0.4 0 0 0 0 0 0 64.45
50 11 data BinaryMasksDataset FALSE 64 16000 256 512 TRUE 0.4 0 0 0 0 0 0 63.84
51 11 data BinaryMasksDataset FALSE 64 16000 256 512 TRUE 0.4 0 0 0 0 0 0 63.9
52 11 data BinaryMasksDataset FALSE 64 16000 256 512 TRUE 0 0 0 0.2 0 0 0 64.18 64.268 0.335949732 mask
53 11 data BinaryMasksDataset FALSE 64 16000 256 512 TRUE 0 0 0 0.2 0 0 0 64.3
54 11 data BinaryMasksDataset FALSE 64 16000 256 512 TRUE 0 0 0 0.2 0 0 0 64.51
55 11 data BinaryMasksDataset FALSE 64 16000 256 512 TRUE 0 0 0 0.2 0 0 0 65
56 11 data BinaryMasksDataset FALSE 64 16000 256 512 TRUE 0 0 0 0.2 0 0 0 64.13
57 11 data BinaryMasksDataset FALSE 64 16000 256 512 TRUE 0 0 0 0.2 0 0 0 63.71
58 11 data BinaryMasksDataset FALSE 64 16000 256 512 TRUE 0 0 0 0.2 0 0 0 64.01
59 11 data BinaryMasksDataset FALSE 64 16000 256 512 TRUE 0 0 0 0.2 0 0 0 64.24
60 11 data BinaryMasksDataset FALSE 64 16000 256 512 TRUE 0 0 0 0.2 0 0 0 64.38
61 11 data BinaryMasksDataset FALSE 64 16000 256 512 TRUE 0 0 0 0.2 0 0 0 64.22
62 11 data BinaryMasksDataset FALSE 64 16000 256 512 TRUE 0 0.4 0 0 0 0 0 66.1 65.394 0.54946843 shift
63 11 data BinaryMasksDataset FALSE 64 16000 256 512 TRUE 0 0.4 0 0 0 0 0 66.07
64 11 data BinaryMasksDataset FALSE 64 16000 256 512 TRUE 0 0.4 0 0 0 0 0 65.32
65 11 data BinaryMasksDataset FALSE 64 16000 256 512 TRUE 0 0.4 0 0 0 0 0 65.86
66 11 data BinaryMasksDataset FALSE 64 16000 256 512 TRUE 0 0.4 0 0 0 0 0 65.21
67 11 data BinaryMasksDataset FALSE 64 16000 256 512 TRUE 0 0.4 0 0 0 0 0 65.24
68 11 data BinaryMasksDataset FALSE 64 16000 256 512 TRUE 0 0.4 0 0 0 0 0 64.23
69 11 data BinaryMasksDataset FALSE 64 16000 256 512 TRUE 0 0.4 0 0 0 0 0 65.54
70 11 data BinaryMasksDataset FALSE 64 16000 256 512 TRUE 0 0.4 0 0 0 0 0 65.28
71 11 data BinaryMasksDataset FALSE 64 16000 256 512 TRUE 0 0.4 0 0 0 0 0 65.09

View File

@ -0,0 +1,71 @@
worker,root,class_name,use_preprocessed,n_mels,sr,hop_length,n_fft,stretch,loudness_ratio,shift_ratio,noise_ratio,mask_ratio,speed_amount,speed_min,speed_max,max,,,
11,data,BinaryMasksDataset,FALSE,64,16000,256,512,TRUE,0,0,0.4,0,0,0,0,63.3,63.38,0.406639343,noise
11,data,BinaryMasksDataset,FALSE,64,16000,256,512,TRUE,0,0,0.4,0,0,0,0,63.27,,,
11,data,BinaryMasksDataset,FALSE,64,16000,256,512,TRUE,0,0,0.4,0,0,0,0,63.54,,,
11,data,BinaryMasksDataset,FALSE,64,16000,256,512,TRUE,0,0,0.4,0,0,0,0,62.69,,,
11,data,BinaryMasksDataset,FALSE,64,16000,256,512,TRUE,0,0,0.4,0,0,0,0,64.05,,,
11,data,BinaryMasksDataset,FALSE,64,16000,256,512,TRUE,0,0,0.4,0,0,0,0,63.71,,,
11,data,BinaryMasksDataset,FALSE,64,16000,256,512,TRUE,0,0,0.4,0,0,0,0,62.8,,,
11,data,BinaryMasksDataset,FALSE,64,16000,256,512,TRUE,0,0,0.4,0,0,0,0,63.55,,,
11,data,BinaryMasksDataset,FALSE,64,16000,256,512,TRUE,0,0,0.4,0,0,0,0,63.58,,,
11,data,BinaryMasksDataset,FALSE,64,16000,256,512,TRUE,0,0,0.4,0,0,0,0,63.31,,,
11,data,BinaryMasksDataset,FALSE,64,16000,256,512,TRUE,0,0.4,0,0,0,0,0,63.6,64.377,0.775901626,shift
11,data,BinaryMasksDataset,FALSE,64,16000,256,512,TRUE,0,0.4,0,0,0,0,0,65.57,,,
11,data,BinaryMasksDataset,FALSE,64,16000,256,512,TRUE,0,0.4,0,0,0,0,0,65.39,,,
11,data,BinaryMasksDataset,FALSE,64,16000,256,512,TRUE,0,0.4,0,0,0,0,0,64.55,,,
11,data,BinaryMasksDataset,FALSE,64,16000,256,512,TRUE,0,0.4,0,0,0,0,0,63.87,,,
11,data,BinaryMasksDataset,FALSE,64,16000,256,512,TRUE,0,0.4,0,0,0,0,0,64.15,,,
11,data,BinaryMasksDataset,FALSE,64,16000,256,512,TRUE,0,0.4,0,0,0,0,0,63.76,,,
11,data,BinaryMasksDataset,FALSE,64,16000,256,512,TRUE,0,0.4,0,0,0,0,0,64.17,,,
11,data,BinaryMasksDataset,FALSE,64,16000,256,512,TRUE,0,0.4,0,0,0,0,0,63.46,,,
11,data,BinaryMasksDataset,FALSE,64,16000,256,512,TRUE,0,0.4,0,0,0,0,0,65.25,,,
11,data,BinaryMasksDataset,FALSE,64,16000,256,512,TRUE,0,0,0,0,0.4,0.7,1.7,64.62,64.069,0.766571733,speed
11,data,BinaryMasksDataset,FALSE,64,16000,256,512,TRUE,0,0,0,0,0.4,0.7,1.7,63.32,,,
11,data,BinaryMasksDataset,FALSE,64,16000,256,512,TRUE,0,0,0,0,0.4,0.7,1.7,62.61,,,
11,data,BinaryMasksDataset,FALSE,64,16000,256,512,TRUE,0,0,0,0,0.4,0.7,1.7,65.44,,,
11,data,BinaryMasksDataset,FALSE,64,16000,256,512,TRUE,0,0,0,0,0.4,0.7,1.7,64.48,,,
11,data,BinaryMasksDataset,FALSE,64,16000,256,512,TRUE,0,0,0,0,0.4,0.7,1.7,64.26,,,
11,data,BinaryMasksDataset,FALSE,64,16000,256,512,TRUE,0,0,0,0,0.4,0.7,1.7,64.05,,,
11,data,BinaryMasksDataset,FALSE,64,16000,256,512,TRUE,0,0,0,0,0.4,0.7,1.7,63.66,,,
11,data,BinaryMasksDataset,FALSE,64,16000,256,512,TRUE,0,0,0,0,0.4,0.7,1.7,63.99,,,
11,data,BinaryMasksDataset,FALSE,64,16000,256,512,TRUE,0,0,0,0,0.4,0.7,1.7,64.26,,,
11,data,BinaryMasksDataset,FALSE,64,16000,256,512,TRUE,0,0,0,0.2,0,0,0,63.75,64.304,0.449102809,mask
11,data,BinaryMasksDataset,FALSE,64,16000,256,512,TRUE,0,0,0,0.2,0,0,0,64.02,,,
11,data,BinaryMasksDataset,FALSE,64,16000,256,512,TRUE,0,0,0,0.2,0,0,0,64.31,,,
11,data,BinaryMasksDataset,FALSE,64,16000,256,512,TRUE,0,0,0,0.2,0,0,0,64.54,,,
11,data,BinaryMasksDataset,FALSE,64,16000,256,512,TRUE,0,0,0,0.2,0,0,0,64.23,,,
11,data,BinaryMasksDataset,FALSE,64,16000,256,512,TRUE,0,0,0,0.2,0,0,0,64.52,,,
11,data,BinaryMasksDataset,FALSE,64,16000,256,512,TRUE,0,0,0,0.2,0,0,0,64.25,,,
11,data,BinaryMasksDataset,FALSE,64,16000,256,512,TRUE,0,0,0,0.2,0,0,0,63.79,,,
11,data,BinaryMasksDataset,FALSE,64,16000,256,512,TRUE,0,0,0,0.2,0,0,0,65.33,,,
11,data,BinaryMasksDataset,FALSE,64,16000,256,512,TRUE,0,0,0,0.2,0,0,0,64.3,,,
11,data,BinaryMasksDataset,FALSE,64,16000,256,512,FALSE,0,0,0,0,0,0,0,64.64,64.53,0.53264539,none
11,data,BinaryMasksDataset,FALSE,64,16000,256,512,FALSE,0,0,0,0,0,0,0,64.19,,,
11,data,BinaryMasksDataset,FALSE,64,16000,256,512,FALSE,0,0,0,0,0,0,0,65.2,,,
11,data,BinaryMasksDataset,FALSE,64,16000,256,512,FALSE,0,0,0,0,0,0,0,64.4,,,
11,data,BinaryMasksDataset,FALSE,64,16000,256,512,FALSE,0,0,0,0,0,0,0,63.88,,,
11,data,BinaryMasksDataset,FALSE,64,16000,256,512,FALSE,0,0,0,0,0,0,0,64.67,,,
11,data,BinaryMasksDataset,FALSE,64,16000,256,512,FALSE,0,0,0,0,0,0,0,63.85,,,
11,data,BinaryMasksDataset,FALSE,64,16000,256,512,FALSE,0,0,0,0,0,0,0,64.25,,,
11,data,BinaryMasksDataset,FALSE,64,16000,256,512,FALSE,0,0,0,0,0,0,0,65.5,,,
11,data,BinaryMasksDataset,FALSE,64,16000,256,512,FALSE,0,0,0,0,0,0,0,64.72,,,
11,data,BinaryMasksDataset,FALSE,64,16000,256,512,TRUE,0.4,0,0,0,0,0,0,63.84,64.14,0.372618363,loudness
11,data,BinaryMasksDataset,FALSE,64,16000,256,512,TRUE,0.4,0,0,0,0,0,0,63.5,,,
11,data,BinaryMasksDataset,FALSE,64,16000,256,512,TRUE,0.4,0,0,0,0,0,0,64,,,
11,data,BinaryMasksDataset,FALSE,64,16000,256,512,TRUE,0.4,0,0,0,0,0,0,64.38,,,
11,data,BinaryMasksDataset,FALSE,64,16000,256,512,TRUE,0.4,0,0,0,0,0,0,64.37,,,
11,data,BinaryMasksDataset,FALSE,64,16000,256,512,TRUE,0.4,0,0,0,0,0,0,64.9,,,
11,data,BinaryMasksDataset,FALSE,64,16000,256,512,TRUE,0.4,0,0,0,0,0,0,64.11,,,
11,data,BinaryMasksDataset,FALSE,64,16000,256,512,TRUE,0.4,0,0,0,0,0,0,64.24,,,
11,data,BinaryMasksDataset,FALSE,64,16000,256,512,TRUE,0.4,0,0,0,0,0,0,63.97,,,
11,data,BinaryMasksDataset,FALSE,64,16000,256,512,TRUE,0.4,0,0,0,0,0,0,64.09,,,
11,data,BinaryMasksDataset,FALSE,64,16000,256,512,TRUE,0.4,0.4,0.4,0.2,0.4,0.7,1.7,64.32,64.118,0.417047826,all
11,data,BinaryMasksDataset,FALSE,64,16000,256,512,TRUE,0.4,0.4,0.4,0.2,0.4,0.7,1.7,64.58,,,
11,data,BinaryMasksDataset,FALSE,64,16000,256,512,TRUE,0.4,0.4,0.4,0.2,0.4,0.7,1.7,63.55,,,
11,data,BinaryMasksDataset,FALSE,64,16000,256,512,TRUE,0.4,0.4,0.4,0.2,0.4,0.7,1.7,64.54,,,
11,data,BinaryMasksDataset,FALSE,64,16000,256,512,TRUE,0.4,0.4,0.4,0.2,0.4,0.7,1.7,64.04,,,
11,data,BinaryMasksDataset,FALSE,64,16000,256,512,TRUE,0.4,0.4,0.4,0.2,0.4,0.7,1.7,63.64,,,
11,data,BinaryMasksDataset,FALSE,64,16000,256,512,TRUE,0.4,0.4,0.4,0.2,0.4,0.7,1.7,63.48,,,
11,data,BinaryMasksDataset,FALSE,64,16000,256,512,TRUE,0.4,0.4,0.4,0.2,0.4,0.7,1.7,64.41,,,
11,data,BinaryMasksDataset,FALSE,64,16000,256,512,TRUE,0.4,0.4,0.4,0.2,0.4,0.7,1.7,64.24,,,
11,data,BinaryMasksDataset,FALSE,64,16000,256,512,TRUE,0.4,0.4,0.4,0.2,0.4,0.7,1.7,64.38,,,
1 worker root class_name use_preprocessed n_mels sr hop_length n_fft stretch loudness_ratio shift_ratio noise_ratio mask_ratio speed_amount speed_min speed_max max
2 11 data BinaryMasksDataset FALSE 64 16000 256 512 TRUE 0 0 0.4 0 0 0 0 63.3 63.38 0.406639343 noise
3 11 data BinaryMasksDataset FALSE 64 16000 256 512 TRUE 0 0 0.4 0 0 0 0 63.27
4 11 data BinaryMasksDataset FALSE 64 16000 256 512 TRUE 0 0 0.4 0 0 0 0 63.54
5 11 data BinaryMasksDataset FALSE 64 16000 256 512 TRUE 0 0 0.4 0 0 0 0 62.69
6 11 data BinaryMasksDataset FALSE 64 16000 256 512 TRUE 0 0 0.4 0 0 0 0 64.05
7 11 data BinaryMasksDataset FALSE 64 16000 256 512 TRUE 0 0 0.4 0 0 0 0 63.71
8 11 data BinaryMasksDataset FALSE 64 16000 256 512 TRUE 0 0 0.4 0 0 0 0 62.8
9 11 data BinaryMasksDataset FALSE 64 16000 256 512 TRUE 0 0 0.4 0 0 0 0 63.55
10 11 data BinaryMasksDataset FALSE 64 16000 256 512 TRUE 0 0 0.4 0 0 0 0 63.58
11 11 data BinaryMasksDataset FALSE 64 16000 256 512 TRUE 0 0 0.4 0 0 0 0 63.31
12 11 data BinaryMasksDataset FALSE 64 16000 256 512 TRUE 0 0.4 0 0 0 0 0 63.6 64.377 0.775901626 shift
13 11 data BinaryMasksDataset FALSE 64 16000 256 512 TRUE 0 0.4 0 0 0 0 0 65.57
14 11 data BinaryMasksDataset FALSE 64 16000 256 512 TRUE 0 0.4 0 0 0 0 0 65.39
15 11 data BinaryMasksDataset FALSE 64 16000 256 512 TRUE 0 0.4 0 0 0 0 0 64.55
16 11 data BinaryMasksDataset FALSE 64 16000 256 512 TRUE 0 0.4 0 0 0 0 0 63.87
17 11 data BinaryMasksDataset FALSE 64 16000 256 512 TRUE 0 0.4 0 0 0 0 0 64.15
18 11 data BinaryMasksDataset FALSE 64 16000 256 512 TRUE 0 0.4 0 0 0 0 0 63.76
19 11 data BinaryMasksDataset FALSE 64 16000 256 512 TRUE 0 0.4 0 0 0 0 0 64.17
20 11 data BinaryMasksDataset FALSE 64 16000 256 512 TRUE 0 0.4 0 0 0 0 0 63.46
21 11 data BinaryMasksDataset FALSE 64 16000 256 512 TRUE 0 0.4 0 0 0 0 0 65.25
22 11 data BinaryMasksDataset FALSE 64 16000 256 512 TRUE 0 0 0 0 0.4 0.7 1.7 64.62 64.069 0.766571733 speed
23 11 data BinaryMasksDataset FALSE 64 16000 256 512 TRUE 0 0 0 0 0.4 0.7 1.7 63.32
24 11 data BinaryMasksDataset FALSE 64 16000 256 512 TRUE 0 0 0 0 0.4 0.7 1.7 62.61
25 11 data BinaryMasksDataset FALSE 64 16000 256 512 TRUE 0 0 0 0 0.4 0.7 1.7 65.44
26 11 data BinaryMasksDataset FALSE 64 16000 256 512 TRUE 0 0 0 0 0.4 0.7 1.7 64.48
27 11 data BinaryMasksDataset FALSE 64 16000 256 512 TRUE 0 0 0 0 0.4 0.7 1.7 64.26
28 11 data BinaryMasksDataset FALSE 64 16000 256 512 TRUE 0 0 0 0 0.4 0.7 1.7 64.05
29 11 data BinaryMasksDataset FALSE 64 16000 256 512 TRUE 0 0 0 0 0.4 0.7 1.7 63.66
30 11 data BinaryMasksDataset FALSE 64 16000 256 512 TRUE 0 0 0 0 0.4 0.7 1.7 63.99
31 11 data BinaryMasksDataset FALSE 64 16000 256 512 TRUE 0 0 0 0 0.4 0.7 1.7 64.26
32 11 data BinaryMasksDataset FALSE 64 16000 256 512 TRUE 0 0 0 0.2 0 0 0 63.75 64.304 0.449102809 mask
33 11 data BinaryMasksDataset FALSE 64 16000 256 512 TRUE 0 0 0 0.2 0 0 0 64.02
34 11 data BinaryMasksDataset FALSE 64 16000 256 512 TRUE 0 0 0 0.2 0 0 0 64.31
35 11 data BinaryMasksDataset FALSE 64 16000 256 512 TRUE 0 0 0 0.2 0 0 0 64.54
36 11 data BinaryMasksDataset FALSE 64 16000 256 512 TRUE 0 0 0 0.2 0 0 0 64.23
37 11 data BinaryMasksDataset FALSE 64 16000 256 512 TRUE 0 0 0 0.2 0 0 0 64.52
38 11 data BinaryMasksDataset FALSE 64 16000 256 512 TRUE 0 0 0 0.2 0 0 0 64.25
39 11 data BinaryMasksDataset FALSE 64 16000 256 512 TRUE 0 0 0 0.2 0 0 0 63.79
40 11 data BinaryMasksDataset FALSE 64 16000 256 512 TRUE 0 0 0 0.2 0 0 0 65.33
41 11 data BinaryMasksDataset FALSE 64 16000 256 512 TRUE 0 0 0 0.2 0 0 0 64.3
42 11 data BinaryMasksDataset FALSE 64 16000 256 512 FALSE 0 0 0 0 0 0 0 64.64 64.53 0.53264539 none
43 11 data BinaryMasksDataset FALSE 64 16000 256 512 FALSE 0 0 0 0 0 0 0 64.19
44 11 data BinaryMasksDataset FALSE 64 16000 256 512 FALSE 0 0 0 0 0 0 0 65.2
45 11 data BinaryMasksDataset FALSE 64 16000 256 512 FALSE 0 0 0 0 0 0 0 64.4
46 11 data BinaryMasksDataset FALSE 64 16000 256 512 FALSE 0 0 0 0 0 0 0 63.88
47 11 data BinaryMasksDataset FALSE 64 16000 256 512 FALSE 0 0 0 0 0 0 0 64.67
48 11 data BinaryMasksDataset FALSE 64 16000 256 512 FALSE 0 0 0 0 0 0 0 63.85
49 11 data BinaryMasksDataset FALSE 64 16000 256 512 FALSE 0 0 0 0 0 0 0 64.25
50 11 data BinaryMasksDataset FALSE 64 16000 256 512 FALSE 0 0 0 0 0 0 0 65.5
51 11 data BinaryMasksDataset FALSE 64 16000 256 512 FALSE 0 0 0 0 0 0 0 64.72
52 11 data BinaryMasksDataset FALSE 64 16000 256 512 TRUE 0.4 0 0 0 0 0 0 63.84 64.14 0.372618363 loudness
53 11 data BinaryMasksDataset FALSE 64 16000 256 512 TRUE 0.4 0 0 0 0 0 0 63.5
54 11 data BinaryMasksDataset FALSE 64 16000 256 512 TRUE 0.4 0 0 0 0 0 0 64
55 11 data BinaryMasksDataset FALSE 64 16000 256 512 TRUE 0.4 0 0 0 0 0 0 64.38
56 11 data BinaryMasksDataset FALSE 64 16000 256 512 TRUE 0.4 0 0 0 0 0 0 64.37
57 11 data BinaryMasksDataset FALSE 64 16000 256 512 TRUE 0.4 0 0 0 0 0 0 64.9
58 11 data BinaryMasksDataset FALSE 64 16000 256 512 TRUE 0.4 0 0 0 0 0 0 64.11
59 11 data BinaryMasksDataset FALSE 64 16000 256 512 TRUE 0.4 0 0 0 0 0 0 64.24
60 11 data BinaryMasksDataset FALSE 64 16000 256 512 TRUE 0.4 0 0 0 0 0 0 63.97
61 11 data BinaryMasksDataset FALSE 64 16000 256 512 TRUE 0.4 0 0 0 0 0 0 64.09
62 11 data BinaryMasksDataset FALSE 64 16000 256 512 TRUE 0.4 0.4 0.4 0.2 0.4 0.7 1.7 64.32 64.118 0.417047826 all
63 11 data BinaryMasksDataset FALSE 64 16000 256 512 TRUE 0.4 0.4 0.4 0.2 0.4 0.7 1.7 64.58
64 11 data BinaryMasksDataset FALSE 64 16000 256 512 TRUE 0.4 0.4 0.4 0.2 0.4 0.7 1.7 63.55
65 11 data BinaryMasksDataset FALSE 64 16000 256 512 TRUE 0.4 0.4 0.4 0.2 0.4 0.7 1.7 64.54
66 11 data BinaryMasksDataset FALSE 64 16000 256 512 TRUE 0.4 0.4 0.4 0.2 0.4 0.7 1.7 64.04
67 11 data BinaryMasksDataset FALSE 64 16000 256 512 TRUE 0.4 0.4 0.4 0.2 0.4 0.7 1.7 63.64
68 11 data BinaryMasksDataset FALSE 64 16000 256 512 TRUE 0.4 0.4 0.4 0.2 0.4 0.7 1.7 63.48
69 11 data BinaryMasksDataset FALSE 64 16000 256 512 TRUE 0.4 0.4 0.4 0.2 0.4 0.7 1.7 64.41
70 11 data BinaryMasksDataset FALSE 64 16000 256 512 TRUE 0.4 0.4 0.4 0.2 0.4 0.7 1.7 64.24
71 11 data BinaryMasksDataset FALSE 64 16000 256 512 TRUE 0.4 0.4 0.4 0.2 0.4 0.7 1.7 64.38

BIN
output/shift.png Normal file

Binary file not shown.

After

Width:  |  Height:  |  Size: 18 KiB

BIN
output/speed.png Normal file

Binary file not shown.

After

Width:  |  Height:  |  Size: 18 KiB

45
repair_outputs.py Normal file
View File

@ -0,0 +1,45 @@
import csv
from pathlib import Path
import shutil
if __name__ == '__main__':
for old_out_file in (Path() / 'output').rglob('*_test_out.csv'):
old_out_file.unlink()
for new_out_file in (Path() / 'output').rglob('*_test_out_repair.csv'):
shutil.move(str(new_out_file), str(new_out_file).replace('_test_out_repair', '_test_out'))
exit()
'''
with old_out_file.open('r') as old_f:
predictions = []
file_names = []
idx = 1
zeros = '00000'
_ = old_f.readline()
for row in old_f:
split_row = row.split(',')
file_names.append(f'test_{zeros[:-len(str(idx))]}{idx}.wav')
predictions.append(split_row[-1].strip()
.replace('"', '').replace('(', '').replace(')', '').replace("'", '')
)
idx += 1
try:
(old_out_file.parent / f'{old_out_file.name}_repair').unlink()
except FileNotFoundError:
pass
with (old_out_file.parent / f'{old_out_file.name[:-4]}_repair.csv').open('w') as new_f:
headers = ['file_name', 'prediction']
writer = csv.DictWriter(new_f, delimiter=',', lineterminator='\n', fieldnames=headers)
writer.writeheader() # write a header
writer.writerows([dict(file_name=file_name, prediction=prediction)
for file_name, prediction in zip(file_names, predictions)]
)
'''
pass

View File

@ -1,11 +1,17 @@
from collections import defaultdict
# Imports from python Internals
from abc import ABC
from argparse import Namespace
from itertools import cycle
from collections import defaultdict, namedtuple
import sklearn
import torch
# Numerical Imports, Metrics and Plotting
import numpy as np
from sklearn.ensemble import IsolationForest
from sklearn.metrics import confusion_matrix, ConfusionMatrixDisplay, roc_auc_score, roc_curve, auc, f1_score, \
recall_score, average_precision_score
from matplotlib import pyplot as plt
# Import Deep Learning Framework
import torch
from torch import nn
from torch.optim import Adam
from torch.optim.lr_scheduler import CosineAnnealingWarmRestarts
@ -13,15 +19,25 @@ from torch.utils.data import DataLoader
from torchcontrib.optim import SWA
from torchvision.transforms import Compose, RandomApply
from ml_lib.audio_toolset.audio_augmentation import Speed
# Import Functions and Modules from MLLIB
from ml_lib.audio_toolset.mel_augmentation import NoiseInjection, LoudnessManipulator, ShiftTime, MaskAug
from ml_lib.audio_toolset.audio_io import AudioToMel, MelToImage, NormalizeLocal
from ml_lib.audio_toolset.audio_io import NormalizeLocal
from ml_lib.modules.util import LightningBaseModule
from ml_lib.utils.tools import to_one_hot
from ml_lib.utils.transforms import ToTensor
# Import Project Variables
import variables as V
class BaseLossMixin:
absolute_loss = nn.L1Loss()
nll_loss = nn.NLLLoss()
bce_loss = nn.BCELoss()
ce_loss = nn.CrossEntropyLoss()
class BaseOptimizerMixin:
def configure_optimizers(self):
@ -60,16 +76,12 @@ class BaseOptimizerMixin:
class BaseTrainMixin:
absolute_loss = nn.L1Loss()
nll_loss = nn.NLLLoss()
bce_loss = nn.BCELoss()
def training_step(self, batch_xy, batch_nb, *args, **kwargs):
assert isinstance(self, LightningBaseModule)
batch_x, batch_y = batch_xy
y = self(batch_x).main_out
bce_loss = self.bce_loss(y.squeeze(), batch_y)
return dict(loss=bce_loss)
loss = self.ce_loss(y.squeeze(), batch_y.long())
return dict(loss=loss)
def training_epoch_end(self, outputs):
assert isinstance(self, LightningBaseModule)
@ -84,55 +96,39 @@ class BaseTrainMixin:
class BaseValMixin:
absolute_loss = nn.L1Loss()
nll_loss = nn.NLLLoss()
bce_loss = nn.BCELoss()
def validation_step(self, batch_xy, batch_idx, dataloader_idx, *args, **kwargs):
def validation_step(self, batch_xy, batch_idx, *args, **kwargs):
assert isinstance(self, LightningBaseModule)
batch_x, batch_y = batch_xy
y = self(batch_x).main_out
val_bce_loss = self.bce_loss(y.squeeze(), batch_y)
return dict(val_bce_loss=val_bce_loss,
val_loss = self.ce_loss(y.squeeze(), batch_y.long())
return dict(val_loss=val_loss,
batch_idx=batch_idx, y=y, batch_y=batch_y)
def validation_epoch_end(self, outputs, *_, **__):
assert isinstance(self, LightningBaseModule)
summary_dict = dict()
for output_idx, output in enumerate(outputs):
keys = list(output[0].keys())
ident = '' if output_idx == 0 else '_train'
summary_dict.update({f'mean{ident}_{key}': torch.mean(torch.stack([output[key]
for output in output]))
for key in keys if 'loss' in key}
)
# UnweightedAverageRecall
y_true = torch.cat([output['batch_y'] for output in output]) .cpu().numpy()
y_pred = torch.cat([output['y'] for output in output]).squeeze().cpu().numpy()
keys = list(outputs[0].keys())
summary_dict.update({f'mean_{key}': torch.mean(torch.stack([output[key]
for output in outputs]))
for key in keys if 'loss' in key}
)
y_pred = (y_pred >= 0.5).astype(np.float32)
additional_scores = self.additional_scores(outputs)
summary_dict.update(**additional_scores)
uar_score = sklearn.metrics.recall_score(y_true, y_pred, labels=[0, 1], average='macro',
sample_weight=None, zero_division='warn')
uar_score = torch.as_tensor(uar_score)
summary_dict.update({f'uar{ident}_score': uar_score})
for key in summary_dict.keys():
self.log(key, summary_dict[key])
for key in summary_dict.keys():
self.log(key, summary_dict[key])
class BaseTestMixin:
absolute_loss = nn.L1Loss()
nll_loss = nn.NLLLoss()
bce_loss = nn.BCELoss()
def test_step(self, batch_xy, batch_idx, dataloader_idx, *args, **kwargs):
def test_step(self, batch_xy, batch_idx, *_, **__):
assert isinstance(self, LightningBaseModule)
batch_x, batch_y = batch_xy
y = self(batch_x).main_out
test_bce_loss = self.bce_loss(y.squeeze(), batch_y)
return dict(test_bce_loss=test_bce_loss,
test_loss = self.ce_loss(y.squeeze(), batch_y.long())
return dict(test_loss=test_loss,
batch_idx=batch_idx, y=y, batch_y=batch_y)
def test_epoch_end(self, outputs, *_, **__):
@ -145,16 +141,9 @@ class BaseTestMixin:
for key in keys if 'loss' in key}
)
# UnweightedAverageRecall
y_true = torch.cat([output['batch_y'] for output in outputs]) .cpu().numpy()
y_pred = torch.cat([output['y'] for output in outputs]).squeeze().cpu().numpy()
additional_scores = self.additional_scores(outputs)
summary_dict.update(**additional_scores)
y_pred = (y_pred >= 0.5).astype(np.float32)
uar_score = sklearn.metrics.recall_score(y_true, y_pred, labels=[0, 1], average='macro',
sample_weight=None, zero_division='warn')
uar_score = torch.as_tensor(uar_score)
summary_dict.update({f'uar_score': uar_score})
for key in summary_dict.keys():
self.log(key, summary_dict[key])
@ -167,53 +156,56 @@ class DatasetMixin:
# Dataset
# =============================================================================
# Mel Transforms
mel_transforms = Compose([
# Audio to Mel Transformations
AudioToMel(sr=self.params.sr,
n_mels=self.params.n_mels,
n_fft=self.params.n_fft,
hop_length=self.params.hop_length),
MelToImage()])
mel_transforms_train = Compose([
# Audio to Mel Transformations
Speed(max_amount=self.params.speed_amount,
speed_min=self.params.speed_min,
speed_max=self.params.speed_max
),
mel_transforms])
mel_kwargs = dict(sample_rate=self.params.sr,
n_mels=self.params.n_mels,
n_fft=self.params.n_fft,
hop_length=self.params.hop_length)
# Utility
util_transforms = Compose([NormalizeLocal(), ToTensor()])
utility_transforms = Compose([NormalizeLocal(), ToTensor()])
# Data Augmentations
aug_transforms = Compose([
mel_augmentations = Compose([
RandomApply([
NoiseInjection(self.params.noise_ratio),
LoudnessManipulator(self.params.loudness_ratio),
ShiftTime(self.params.shift_ratio),
MaskAug(self.params.mask_ratio),
NoiseInjection(0.2),
LoudnessManipulator(0.5),
ShiftTime(0.4),
MaskAug(0.2),
], p=0.6),
util_transforms])
utility_transforms])
# Datasets
dataset = Namespace(
**dict(
# TRAIN DATASET
train_dataset=self.dataset_class(self.params.root, setting=V.DATA_OPTIONS.train,
use_preprocessed=self.params.use_preprocessed,
stretch_dataset=self.params.stretch,
mel_transforms=mel_transforms_train, transforms=aug_transforms),
# VALIDATION DATASET
val_train_dataset=self.dataset_class(self.params.root, setting=V.DATA_OPTIONS.train,
mel_transforms=mel_transforms, transforms=util_transforms),
val_dataset=self.dataset_class(self.params.root, setting=V.DATA_OPTIONS.devel,
mel_transforms=mel_transforms, transforms=util_transforms),
# TEST DATASET
test_dataset=self.dataset_class(self.params.root, setting=V.DATA_OPTIONS.test,
mel_transforms=mel_transforms, transforms=util_transforms),
)
)
Dataset = namedtuple('Datasets', 'train_dataset val_dataset test_dataset')
dataset = Dataset(self.dataset_class(data_root=self.params.root, # TRAIN DATASET
setting=V.DATA_OPTION_train,
fold=list(range(1,8)),
reset=self.params.reset,
mel_kwargs=mel_kwargs,
mel_augmentations=mel_augmentations),
val_dataset=self.dataset_class(data_root=self.params.root, # VALIDATION DATASET
setting=V.DATA_OPTION_devel,
fold=9,
reset=self.params.reset,
mel_kwargs=mel_kwargs,
mel_augmentations=utility_transforms),
test_dataset=self.dataset_class(data_root=self.params.root, # TEST DATASET
setting=V.DATA_OPTION_test,
fold=10,
reset=self.params.reset,
mel_kwargs=mel_kwargs,
mel_augmentations=utility_transforms),
)
if dataset.train_dataset.task_type == V.TASK_OPTION_binary:
# noinspection PyAttributeOutsideInit
self.additional_scores = BinaryScores(self)
elif dataset.train_dataset.task_type == V.TASK_OPTION_multiclass:
# noinspection PyAttributeOutsideInit
self.additional_scores = MultiClassScores(self)
else:
raise ValueError
return dataset
@ -240,10 +232,185 @@ class BaseDataloadersMixin(ABC):
# Validation Dataloader
def val_dataloader(self):
assert isinstance(self, LightningBaseModule)
val_dataloader = DataLoader(dataset=self.dataset.val_dataset, shuffle=False, pin_memory=True,
batch_size=self.params.batch_size, num_workers=self.params.worker)
return DataLoader(dataset=self.dataset.val_dataset, shuffle=False, pin_memory=True,
batch_size=self.params.batch_size, num_workers=self.params.worker)
train_dataloader = DataLoader(self.dataset.val_train_dataset, num_workers=self.params.worker,
pin_memory=True,
batch_size=self.params.batch_size, shuffle=False)
return [val_dataloader, train_dataloader]
class BaseScores(ABC):
def __init__(self, lightning_model):
self.model = lightning_model
pass
def __call__(self, outputs):
# summary_dict = dict()
# return summary_dict
raise NotImplementedError
class MultiClassScores(BaseScores):
def __init__(self, *args):
super(MultiClassScores, self).__init__(*args)
pass
def __call__(self, outputs):
summary_dict = dict()
#######################################################################################
# Additional Score - UAR - ROC - Conf. Matrix - F1
#######################################################################################
#
# INIT
y_true = torch.cat([output['batch_y'] for output in outputs]).cpu().numpy()
y_true_one_hot = to_one_hot(y_true, self.model.n_classes)
y_pred = torch.cat([output['y'] for output in outputs]).squeeze().cpu().float().numpy()
y_pred_max = np.argmax(y_pred, axis=1)
class_names = {val: key for key, val in self.model.dataset.test_dataset.classes.items()}
######################################################################################
#
# F1 SCORE
micro_f1_score = f1_score(y_true, y_pred_max, labels=None, pos_label=1, average='micro', sample_weight=None,
zero_division=True)
macro_f1_score = f1_score(y_true, y_pred_max, labels=None, pos_label=1, average='macro', sample_weight=None,
zero_division=True)
summary_dict.update(dict(micro_f1_score=micro_f1_score, macro_f1_score=macro_f1_score))
#######################################################################################
#
# ROC Curve
# Compute ROC curve and ROC area for each class
fpr = dict()
tpr = dict()
roc_auc = dict()
for i in range(self.model.n_classes):
fpr[i], tpr[i], _ = roc_curve(y_true_one_hot[:, i], y_pred[:, i])
roc_auc[i] = auc(fpr[i], tpr[i])
# Compute micro-average ROC curve and ROC area
fpr["micro"], tpr["micro"], _ = roc_curve(y_true_one_hot.ravel(), y_pred.ravel())
roc_auc["micro"] = auc(fpr["micro"], tpr["micro"])
# First aggregate all false positive rates
all_fpr = np.unique(np.concatenate([fpr[i] for i in range(self.model.n_classes)]))
# Then interpolate all ROC curves at this points
mean_tpr = np.zeros_like(all_fpr)
for i in range(self.model.n_classes):
mean_tpr += np.interp(all_fpr, fpr[i], tpr[i])
# Finally average it and compute AUC
mean_tpr /= self.model.n_classes
fpr["macro"] = all_fpr
tpr["macro"] = mean_tpr
roc_auc["macro"] = auc(fpr["macro"], tpr["macro"])
# Plot all ROC curves
plt.figure()
plt.plot(fpr["micro"], tpr["micro"],
label=f'micro ROC ({round(roc_auc["micro"], 2)})',
color='deeppink', linestyle=':', linewidth=4)
plt.plot(fpr["macro"], tpr["macro"],
label=f'macro ROC({round(roc_auc["macro"], 2)})',
color='navy', linestyle=':', linewidth=4)
colors = cycle(['firebrick', 'orangered', 'gold', 'olive', 'limegreen', 'aqua',
'dodgerblue', 'slategrey', 'royalblue', 'indigo', 'fuchsia'], )
for i, color in zip(range(self.model.n_classes), colors):
plt.plot(fpr[i], tpr[i], color=color, lw=2, label=f'{class_names[i]} ({round(roc_auc[i], 2)})')
plt.plot([0, 1], [0, 1], 'k--', lw=2)
plt.xlim([0.0, 1.0])
plt.ylim([0.0, 1.05])
plt.xlabel('False Positive Rate')
plt.ylabel('True Positive Rate')
plt.legend(loc="lower right")
self.model.logger.log_image('ROC', image=plt.gcf(), step=self.model.current_epoch)
self.model.logger.log_image('ROC', image=plt.gcf(), step=self.model.current_epoch, ext='pdf')
plt.clf()
#######################################################################################
#
# ROC SCORE
try:
macro_roc_auc_ovr = roc_auc_score(y_true_one_hot, y_pred, multi_class="ovr",
average="macro")
summary_dict.update(macro_roc_auc_ovr=macro_roc_auc_ovr)
except ValueError:
micro_roc_auc_ovr = roc_auc_score(y_true_one_hot, y_pred, multi_class="ovr",
average="micro")
summary_dict.update(micro_roc_auc_ovr=micro_roc_auc_ovr)
#######################################################################################
#
# Confusion matrix
cm = confusion_matrix([class_names[x] for x in y_true], [class_names[x] for x in y_pred_max],
labels=[class_names[key] for key in class_names.keys()],
normalize='all')
disp = ConfusionMatrixDisplay(confusion_matrix=cm,
display_labels=[class_names[i] for i in range(self.model.n_classes)]
)
disp.plot(include_values=True)
self.model.logger.log_image('Confusion_Matrix', image=disp.figure_, step=self.model.current_epoch)
self.model.logger.log_image('Confusion_Matrix', image=disp.figure_, step=self.model.current_epoch, ext='pdf')
plt.close('all')
return summary_dict
class BinaryScores(BaseScores):
def __init__(self, *args):
super(BinaryScores, self).__init__(*args)
def __call__(self, outputs):
summary_dict = dict()
# Additional Score like the unweighted Average Recall:
#########################
# UnweightedAverageRecall
y_true = torch.cat([output['batch_y'] for output in outputs]) .cpu().numpy()
y_pred = torch.cat([output['element_wise_recon_error'] for output in outputs]).squeeze().cpu().numpy()
# How to apply a threshold manualy
# y_pred = (y_pred >= 0.5).astype(np.float32)
# How to apply a threshold by IF (Isolation Forest)
clf = IsolationForest(random_state=self.model.seed)
y_score = clf.fit_predict(y_pred.reshape(-1,1))
y_score = (np.asarray(y_score) == -1).astype(np.float32)
uar_score = recall_score(y_true, y_score, labels=[0, 1], average='macro',
sample_weight=None, zero_division='warn')
summary_dict.update(dict(uar_score=uar_score))
#########################
# Precission
precision_score = average_precision_score(y_true, y_score)
summary_dict.update(dict(precision_score=precision_score))
#########################
# AUC
try:
auc_score = roc_auc_score(y_true=y_true, y_score=y_score)
summary_dict.update(dict(auc_score=auc_score))
except ValueError:
summary_dict.update(dict(auc_score=-1))
#########################
# pAUC
try:
pauc = roc_auc_score(y_true=y_true, y_score=y_score, max_fpr=0.15)
summary_dict.update(dict(pauc_score=pauc))
except ValueError:
summary_dict.update(dict(pauc_score=-1))
return summary_dict

View File

@ -4,8 +4,22 @@ from argparse import Namespace
CLEAR = 0
MASK = 1
NUM_CLASSES = 2
# Task Options
TASK_OPTION_multiclass = 'multiclass'
N_CLASS_multi = 10
multi_classes_names = ['air_conditioner', 'car_horn', 'children_playing',
'dog_bar', 'drilling', 'engine_idling',
'gun_shot', 'jackhammer', 'siren', 'street_music']
multi_classes = {key: val for val, key in enumerate(multi_classes_names)}
TASK_OPTION_binary = 'binary'
N_CLASS_binary = 2
binary_CLASS_clear = 0
binary_CLASS_maske = 1
# Dataset Options
DATA_OPTIONS = Namespace(test='test', devel='devel', train='train')
DATA_OPTION_test = 'test'
DATA_OPTION_devel = 'devel'
DATA_OPTION_train = 'train'
DATA_OPTIONS = [DATA_OPTION_train, DATA_OPTION_devel, DATA_OPTION_test]