torchaudio testing
This commit is contained in:
parent
95dcf22f3d
commit
68431b848e
@ -22,7 +22,7 @@ main_arg_parser.add_argument("--main_seed", type=int, default=69, help="")
|
||||
main_arg_parser.add_argument("--data_class_name", type=str, default='Urban8K', help="")
|
||||
main_arg_parser.add_argument("--data_worker", type=int, default=6, help="")
|
||||
main_arg_parser.add_argument("--data_root", type=str, default='data', help="")
|
||||
main_arg_parser.add_argument("--data_use_preprocessed", type=strtobool, default=True, help="")
|
||||
main_arg_parser.add_argument("--data_reset", type=strtobool, default=False, help="")
|
||||
main_arg_parser.add_argument("--data_n_mels", type=int, default=64, help="")
|
||||
main_arg_parser.add_argument("--data_sr", type=int, default=16000, help="")
|
||||
main_arg_parser.add_argument("--data_hop_length", type=int, default=256, help="")
|
||||
|
104
datasets/base_dataset.py
Normal file
104
datasets/base_dataset.py
Normal file
@ -0,0 +1,104 @@
|
||||
import pickle
|
||||
from pathlib import Path
|
||||
from typing import Union
|
||||
from abc import ABC
|
||||
|
||||
import variables as V
|
||||
|
||||
from torch.utils.data import Dataset
|
||||
|
||||
class BaseAudioToMelDataset(Dataset, ABC):
|
||||
|
||||
@property
|
||||
def task_type(self):
|
||||
return self._task_type
|
||||
|
||||
@property
|
||||
def classes(self):
|
||||
return V.multi_classes
|
||||
|
||||
@property
|
||||
def n_classes(self):
|
||||
return V.N_CLASS_binary if self.task_type == V.TASK_OPTION_binary else V.N_CLASS_multi
|
||||
|
||||
@property
|
||||
def sample_shape(self):
|
||||
return self[0][0].shape
|
||||
|
||||
@property
|
||||
def _fingerprint(self):
|
||||
raise NotImplementedError
|
||||
return str(self._mel_transform)
|
||||
|
||||
# Data Structures
|
||||
@property
|
||||
def mel_folder(self):
|
||||
return self.data_root / 'mel'
|
||||
|
||||
@property
|
||||
def wav_folder(self):
|
||||
return self.data_root / self._wav_folder_name
|
||||
|
||||
@property
|
||||
def _container_ext(self):
|
||||
return '.mel'
|
||||
|
||||
def __init__(self, data_root: Union[str, Path], task_type, mel_kwargs,
|
||||
mel_augmentations=None, audio_augmentations=None, reset=False,
|
||||
wav_folder_name='wav', **_):
|
||||
super(BaseAudioToMelDataset, self).__init__()
|
||||
|
||||
# Dataset Parameters
|
||||
self.data_root = Path(data_root)
|
||||
self._wav_folder_name = wav_folder_name
|
||||
self.reset = reset
|
||||
self.mel_kwargs = mel_kwargs
|
||||
|
||||
# Transformations
|
||||
self.mel_augmentations = mel_augmentations
|
||||
self.audio_augmentations = audio_augmentations
|
||||
self._task_type = task_type
|
||||
|
||||
# Find all raw files and turn generator to persistent list:
|
||||
self._wav_files = list(self.wav_folder.rglob('*.wav'))
|
||||
|
||||
# Build the Dataset
|
||||
self._dataset = self._build_dataset()
|
||||
|
||||
|
||||
def __len__(self):
|
||||
raise NotImplementedError
|
||||
|
||||
def __getitem__(self, item):
|
||||
raise NotImplementedError
|
||||
|
||||
def _build_dataset(self):
|
||||
raise NotImplementedError
|
||||
|
||||
def _check_reset_and_clean_up(self, reset):
|
||||
all_mel_folders = set([str(x.parent).replace(self._wav_folder_name, 'mel') for x in self._wav_files])
|
||||
for mel_folder in all_mel_folders:
|
||||
param_storage = Path(mel_folder) / 'data_params.pik'
|
||||
param_storage.parent.mkdir(parents=True, exist_ok=True)
|
||||
try:
|
||||
pik_data = param_storage.read_bytes()
|
||||
fingerprint = pickle.loads(pik_data)
|
||||
if fingerprint == self._fingerprint:
|
||||
this_reset = reset
|
||||
else:
|
||||
print('Diverging parameters were found; Refreshing...')
|
||||
param_storage.unlink()
|
||||
pik_data = pickle.dumps(self._fingerprint)
|
||||
param_storage.write_bytes(pik_data)
|
||||
this_reset = True
|
||||
|
||||
except FileNotFoundError:
|
||||
pik_data = pickle.dumps(self._fingerprint)
|
||||
param_storage.write_bytes(pik_data)
|
||||
this_reset = True
|
||||
|
||||
if this_reset:
|
||||
all_mel_files = self.mel_folder.rglob(f'*{self._container_ext}')
|
||||
for mel_file in all_mel_files:
|
||||
mel_file.unlink()
|
||||
|
@ -20,17 +20,20 @@ class BinaryMasksDataset(Dataset):
|
||||
|
||||
@property
|
||||
def _fingerprint(self):
|
||||
return dict(**self._mel_kwargs, normalize=self.normalize)
|
||||
return dict(**self._mel_kwargs if self._mel_kwargs else dict())
|
||||
|
||||
def __init__(self, data_root, setting, mel_transforms, transforms=None, stretch_dataset=False,
|
||||
use_preprocessed=True):
|
||||
use_preprocessed=True, mel_kwargs=None):
|
||||
self.stretch = stretch_dataset
|
||||
assert isinstance(setting, str), f'Setting has to be a string, but was: {type(setting)}.'
|
||||
assert setting in V.DATA_OPTIONS, f'Setting must match one of: {V.DATA_OPTIONS}.'
|
||||
super(BinaryMasksDataset, self).__init__()
|
||||
|
||||
self.task = V.TASK_OPTION_binary
|
||||
|
||||
self.data_root = Path(data_root) / 'ComParE2020_Mask'
|
||||
self.setting = setting
|
||||
self._mel_kwargs = mel_kwargs
|
||||
self._wav_folder = self.data_root / 'wav'
|
||||
self._mel_folder = self.data_root / 'mel'
|
||||
self.container_ext = '.pik'
|
||||
|
@ -1,140 +1,78 @@
|
||||
import pickle
|
||||
from pathlib import Path
|
||||
import multiprocessing as mp
|
||||
from typing import Union, List
|
||||
|
||||
import librosa as librosa
|
||||
from torch.utils.data import Dataset, ConcatDataset
|
||||
import multiprocessing as mp
|
||||
from torch.utils.data import ConcatDataset
|
||||
import torch
|
||||
from tqdm import tqdm
|
||||
|
||||
import variables as V
|
||||
from ml_lib.audio_toolset.mel_dataset import TorchMelDataset
|
||||
from ml_lib.modules.util import F_x
|
||||
from datasets.base_dataset import BaseAudioToMelDataset
|
||||
from ml_lib.audio_toolset.audio_to_mel_dataset import LibrosaAudioToMelDataset, PyTorchAudioToMelDataset
|
||||
|
||||
|
||||
class Urban8K(Dataset):
|
||||
try:
|
||||
torch.multiprocessing.set_sharing_strategy('file_system')
|
||||
except AttributeError:
|
||||
pass
|
||||
|
||||
@property
|
||||
def sample_shape(self):
|
||||
return self[0][0].shape
|
||||
class Urban8K(BaseAudioToMelDataset):
|
||||
|
||||
@property
|
||||
def _fingerprint(self):
|
||||
return str(self._mel_transform)
|
||||
|
||||
def __init__(self, data_root, setting, mel_transforms, fold=1, transforms=None,
|
||||
use_preprocessed=True, audio_segment_len=62, audio_hop_len=30, num_worker=mp.cpu_count(),
|
||||
**_):
|
||||
def __init__(self,
|
||||
data_root, setting, fold: Union[int, List]=1, num_worker=mp.cpu_count(),
|
||||
reset=False, sample_segment_len=50, sample_hop_len=20,
|
||||
**kwargs):
|
||||
self.num_worker = num_worker
|
||||
assert isinstance(setting, str), f'Setting has to be a string, but was: {type(setting)}.'
|
||||
assert setting in V.DATA_OPTIONS, f'Setting must match one of: {V.DATA_OPTIONS}.'
|
||||
assert fold in range(1, 11)
|
||||
super(Urban8K, self).__init__()
|
||||
assert fold in range(1, 11) if isinstance(fold, int) else all([f in range(1, 11) for f in fold])
|
||||
|
||||
self.data_root = Path(data_root) / 'UrbanSound8K'
|
||||
#Dataset Paramters
|
||||
self.setting = setting
|
||||
self.num_worker = num_worker
|
||||
self.fold = fold if self.setting == V.DATA_OPTIONS.train else 10
|
||||
self.use_preprocessed = use_preprocessed
|
||||
self._wav_folder = self.data_root / 'audio' / f'fold{self.fold}'
|
||||
self._mel_folder = self.data_root / 'mel' / f'fold{self.fold}'
|
||||
self.container_ext = '.pik'
|
||||
self._mel_transform = mel_transforms
|
||||
fold = fold if self.setting != V.DATA_OPTION_test else 10
|
||||
self.fold = fold if isinstance(fold, list) else [fold]
|
||||
|
||||
self._labels = self._build_labels()
|
||||
self._wav_files = list(sorted(self._labels.keys()))
|
||||
transforms = transforms or F_x(in_shape=None)
|
||||
self.sample_segment_len = sample_segment_len
|
||||
self.sample_hop_len = sample_hop_len
|
||||
|
||||
param_storage = self._mel_folder / 'data_params.pik'
|
||||
self._mel_folder.mkdir(parents=True, exist_ok=True)
|
||||
try:
|
||||
pik_data = param_storage.read_bytes()
|
||||
fingerprint = pickle.loads(pik_data)
|
||||
if fingerprint == self._fingerprint:
|
||||
self.use_preprocessed = use_preprocessed
|
||||
else:
|
||||
print('Diverging parameters were found; Refreshing...')
|
||||
param_storage.unlink()
|
||||
pik_data = pickle.dumps(self._fingerprint)
|
||||
param_storage.write_bytes(pik_data)
|
||||
self.use_preprocessed = False
|
||||
# Dataset specific super init
|
||||
super(Urban8K, self).__init__(Path(data_root) / 'UrbanSound8K',
|
||||
V.TASK_OPTION_multiclass, reset=reset, wav_folder_name='audio', **kwargs
|
||||
)
|
||||
|
||||
except FileNotFoundError:
|
||||
pik_data = pickle.dumps(self._fingerprint)
|
||||
param_storage.write_bytes(pik_data)
|
||||
self.use_preprocessed = False
|
||||
def _build_subdataset(self, row):
|
||||
slice_file_name, fs_id, start, end, salience, fold, class_id, class_name = row.strip().split(',')
|
||||
fold, class_id = (int(x) for x in (fold, class_id))
|
||||
if int(fold) in self.fold:
|
||||
audio_file_path = self.wav_folder / f'fold{fold}' / slice_file_name
|
||||
return PyTorchAudioToMelDataset(audio_file_path, class_id, **self.__dict__)
|
||||
else:
|
||||
return None
|
||||
|
||||
|
||||
while True:
|
||||
if not self.use_preprocessed:
|
||||
self._pre_process()
|
||||
try:
|
||||
self._dataset = ConcatDataset(
|
||||
[TorchMelDataset(identifier=key, mel_path=self._mel_folder, transform=transforms,
|
||||
segment_len=audio_segment_len, hop_len=audio_hop_len,
|
||||
label=self._labels[key]['label']
|
||||
) for key in self._labels.keys()]
|
||||
)
|
||||
break
|
||||
except IOError:
|
||||
self.use_preprocessed = False
|
||||
pass
|
||||
|
||||
def _build_labels(self):
|
||||
labeldict = dict()
|
||||
def _build_dataset(self):
|
||||
dataset= list()
|
||||
with open(Path(self.data_root) / 'metadata' / 'UrbanSound8K.csv', mode='r') as f:
|
||||
# Exclude the header
|
||||
_ = next(f)
|
||||
for row in f:
|
||||
slice_file_name, fs_id, start, end, salience, fold, class_id, class_name = row.strip().split(',')
|
||||
if int(fold) == self.fold:
|
||||
key = slice_file_name.replace('.wav', '')
|
||||
labeldict[key] = dict(label=int(class_id), fold=int(fold))
|
||||
all_rows = list(f)
|
||||
chunksize = len(all_rows) // max(self.num_worker, 1)
|
||||
with mp.Pool(processes=self.num_worker) as pool:
|
||||
with tqdm(total=len(all_rows)) as pbar:
|
||||
for i, sub_dataset in enumerate(
|
||||
pool.imap_unordered(self._build_subdataset, all_rows, chunksize=chunksize)):
|
||||
pbar.update()
|
||||
dataset.append(sub_dataset)
|
||||
|
||||
# Delete File if one exists.
|
||||
if not self.use_preprocessed:
|
||||
for key in labeldict.keys():
|
||||
for mel_file in self._mel_folder.rglob(f'{key}_*'):
|
||||
try:
|
||||
mel_file.unlink(missing_ok=True)
|
||||
except FileNotFoundError:
|
||||
pass
|
||||
|
||||
return labeldict
|
||||
dataset = ConcatDataset([x for x in dataset if x is not None])
|
||||
return dataset
|
||||
|
||||
def __len__(self):
|
||||
return len(self._dataset)
|
||||
|
||||
def _pre_process(self):
|
||||
print('Preprocessing Mel Files....')
|
||||
with mp.Pool(processes=self.num_worker) as pool:
|
||||
with tqdm(total=len(self._labels)) as pbar:
|
||||
for i, _ in enumerate(pool.imap_unordered(self._build_mel, self._labels.keys())):
|
||||
pbar.update()
|
||||
|
||||
def _build_mel(self, filename):
|
||||
|
||||
wav_file = self._wav_folder / (filename.replace('X', '') + '.wav')
|
||||
mel_file = list(self._mel_folder.glob(f'{filename}_*'))
|
||||
|
||||
if not mel_file:
|
||||
raw_sample, sr = librosa.core.load(wav_file)
|
||||
mel_sample = self._mel_transform(raw_sample)
|
||||
m, n = mel_sample.shape
|
||||
mel_file = self._mel_folder / f'{filename}_{m}_{n}'
|
||||
self._mel_folder.mkdir(exist_ok=True, parents=True)
|
||||
with mel_file.open(mode='wb') as f:
|
||||
pickle.dump(mel_sample, f, protocol=pickle.HIGHEST_PROTOCOL)
|
||||
else:
|
||||
# print(f"Already existed.. Skipping {filename}")
|
||||
mel_file = mel_file[0]
|
||||
|
||||
with mel_file.open(mode='rb') as f:
|
||||
mel_sample = pickle.load(f, fix_imports=True)
|
||||
return mel_sample, mel_file
|
||||
|
||||
def __getitem__(self, item):
|
||||
transformed_samples, label = self._dataset[item]
|
||||
|
||||
label = torch.as_tensor(label, dtype=torch.float)
|
||||
label = torch.as_tensor(label, dtype=torch.int)
|
||||
|
||||
return transformed_samples, label
|
||||
|
@ -1,140 +0,0 @@
|
||||
import pickle
|
||||
from pathlib import Path
|
||||
import multiprocessing as mp
|
||||
|
||||
import librosa as librosa
|
||||
from torch.utils.data import Dataset, ConcatDataset
|
||||
import torch
|
||||
from tqdm import tqdm
|
||||
|
||||
import variables as V
|
||||
from ml_lib.audio_toolset.mel_dataset import TorchMelDataset
|
||||
from ml_lib.modules.util import F_x
|
||||
|
||||
|
||||
class Urban8K_TO(Dataset):
|
||||
|
||||
@property
|
||||
def sample_shape(self):
|
||||
return self[0][0].shape
|
||||
|
||||
@property
|
||||
def _fingerprint(self):
|
||||
return str(self._mel_transform)
|
||||
|
||||
def __init__(self, data_root, setting, mel_transforms, fold=1, transforms=None,
|
||||
use_preprocessed=True, audio_segment_len=1, audio_hop_len=1, num_worker=mp.cpu_count(),
|
||||
**_):
|
||||
assert isinstance(setting, str), f'Setting has to be a string, but was: {type(setting)}.'
|
||||
assert setting in V.DATA_OPTIONS, f'Setting must match one of: {V.DATA_OPTIONS}.'
|
||||
assert fold in range(1, 11)
|
||||
super(Urban8K_TO, self).__init__()
|
||||
|
||||
self.data_root = Path(data_root) / 'UrbanSound8K'
|
||||
self.setting = setting
|
||||
self.num_worker = num_worker
|
||||
self.fold = fold if self.setting == V.DATA_OPTIONS.train else 10
|
||||
self.use_preprocessed = use_preprocessed
|
||||
self._wav_folder = self.data_root / 'audio' / f'fold{self.fold}'
|
||||
self._mel_folder = self.data_root / 'mel' / f'fold{self.fold}'
|
||||
self.container_ext = '.pik'
|
||||
self._mel_transform = mel_transforms
|
||||
|
||||
self._labels = self._build_labels()
|
||||
self._wav_files = list(sorted(self._labels.keys()))
|
||||
transforms = transforms or F_x(in_shape=None)
|
||||
|
||||
param_storage = self._mel_folder / 'data_params.pik'
|
||||
self._mel_folder.mkdir(parents=True, exist_ok=True)
|
||||
try:
|
||||
pik_data = param_storage.read_bytes()
|
||||
fingerprint = pickle.loads(pik_data)
|
||||
if fingerprint == self._fingerprint:
|
||||
self.use_preprocessed = use_preprocessed
|
||||
else:
|
||||
print('Diverging parameters were found; Refreshing...')
|
||||
param_storage.unlink()
|
||||
pik_data = pickle.dumps(self._fingerprint)
|
||||
param_storage.write_bytes(pik_data)
|
||||
self.use_preprocessed = False
|
||||
|
||||
except FileNotFoundError:
|
||||
pik_data = pickle.dumps(self._fingerprint)
|
||||
param_storage.write_bytes(pik_data)
|
||||
self.use_preprocessed = False
|
||||
|
||||
|
||||
while True:
|
||||
if not self.use_preprocessed:
|
||||
self._pre_process()
|
||||
try:
|
||||
self._dataset = ConcatDataset(
|
||||
[TorchMelDataset(identifier=key, mel_path=self._mel_folder, transform=transforms,
|
||||
segment_len=audio_segment_len, hop_len=audio_hop_len,
|
||||
label=self._labels[key]['label']
|
||||
) for key in self._labels.keys()]
|
||||
)
|
||||
break
|
||||
except IOError:
|
||||
self.use_preprocessed = False
|
||||
pass
|
||||
|
||||
def _build_labels(self):
|
||||
labeldict = dict()
|
||||
with open(Path(self.data_root) / 'metadata' / 'UrbanSound8K.csv', mode='r') as f:
|
||||
# Exclude the header
|
||||
_ = next(f)
|
||||
for row in f:
|
||||
slice_file_name, fs_id, start, end, salience, fold, class_id, class_name = row.strip().split(',')
|
||||
if int(fold) == self.fold:
|
||||
key = slice_file_name.replace('.wav', '')
|
||||
labeldict[key] = dict(label=int(class_id), fold=int(fold))
|
||||
|
||||
# Delete File if one exists.
|
||||
if not self.use_preprocessed:
|
||||
for key in labeldict.keys():
|
||||
for mel_file in self._mel_folder.rglob(f'{key}_*'):
|
||||
try:
|
||||
mel_file.unlink(missing_ok=True)
|
||||
except FileNotFoundError:
|
||||
pass
|
||||
|
||||
return labeldict
|
||||
|
||||
def __len__(self):
|
||||
return len(self._dataset)
|
||||
|
||||
def _pre_process(self):
|
||||
print('Preprocessing Mel Files....')
|
||||
with mp.Pool(processes=self.num_worker) as pool:
|
||||
with tqdm(total=len(self._labels)) as pbar:
|
||||
for i, _ in enumerate(pool.imap_unordered(self._build_mel, self._labels.keys())):
|
||||
pbar.update()
|
||||
|
||||
def _build_mel(self, filename):
|
||||
|
||||
wav_file = self._wav_folder / (filename.replace('X', '') + '.wav')
|
||||
mel_file = list(self._mel_folder.glob(f'{filename}_*'))
|
||||
|
||||
if not mel_file:
|
||||
raw_sample, sr = librosa.core.load(wav_file)
|
||||
mel_sample = self._mel_transform(raw_sample)
|
||||
m, n = mel_sample.shape
|
||||
mel_file = self._mel_folder / f'{filename}_{m}_{n}'
|
||||
self._mel_folder.mkdir(exist_ok=True, parents=True)
|
||||
with mel_file.open(mode='wb') as f:
|
||||
pickle.dump(mel_sample, f, protocol=pickle.HIGHEST_PROTOCOL)
|
||||
else:
|
||||
# print(f"Already existed.. Skipping {filename}")
|
||||
mel_file = mel_file[0]
|
||||
|
||||
with mel_file.open(mode='rb') as f:
|
||||
mel_sample = pickle.load(f, fix_imports=True)
|
||||
return mel_sample, mel_file
|
||||
|
||||
def __getitem__(self, item):
|
||||
transformed_samples, label = self._dataset[item]
|
||||
|
||||
label = torch.as_tensor(label, dtype=torch.float)
|
||||
|
||||
return transformed_samples, label
|
@ -9,7 +9,7 @@ from torch.utils.data import DataLoader, Dataset
|
||||
from torchvision.transforms import Compose, RandomApply
|
||||
|
||||
from ml_lib.audio_toolset.audio_augmentation import Speed
|
||||
from ml_lib.audio_toolset.audio_io import AudioToMel, NormalizeLocal, MelToImage
|
||||
from ml_lib.audio_toolset.audio_io import LibrosaAudioToMel, NormalizeLocal, MelToImage
|
||||
|
||||
# Dataset and Dataloaders
|
||||
# =============================================================================
|
||||
@ -28,8 +28,8 @@ from datasets.binar_masks import BinaryMasksDataset
|
||||
|
||||
def prepare_dataloader(config_obj):
|
||||
mel_transforms = Compose([
|
||||
AudioToMel(sr=config_obj.data.sr, n_mels=config_obj.data.n_mels, n_fft=config_obj.data.n_fft,
|
||||
hop_length=config_obj.data.hop_length),
|
||||
LibrosaAudioToMel(sr=config_obj.data.sr, n_mels=config_obj.data.n_mels, n_fft=config_obj.data.n_fft,
|
||||
hop_length=config_obj.data.hop_length),
|
||||
MelToImage()])
|
||||
transforms = Compose([NormalizeLocal(), ToTensor()])
|
||||
"""
|
||||
|
@ -8,7 +8,7 @@ from torch.utils.data import DataLoader, Dataset
|
||||
from torchvision.transforms import Compose, RandomApply
|
||||
|
||||
from ml_lib.audio_toolset.audio_augmentation import Speed
|
||||
from ml_lib.audio_toolset.audio_io import AudioToMel, NormalizeLocal, MelToImage
|
||||
from ml_lib.audio_toolset.audio_io import LibrosaAudioToMel, NormalizeLocal, MelToImage
|
||||
|
||||
# Dataset and Dataloaders
|
||||
# =============================================================================
|
||||
@ -26,8 +26,8 @@ from datasets.binar_masks import BinaryMasksDataset
|
||||
|
||||
def prepare_dataloader(config_obj):
|
||||
mel_transforms = Compose([
|
||||
AudioToMel(sr=config_obj.data.sr, n_mels=config_obj.data.n_mels, n_fft=config_obj.data.n_fft,
|
||||
hop_length=config_obj.data.hop_length),
|
||||
LibrosaAudioToMel(sr=config_obj.data.sr, n_mels=config_obj.data.n_mels, n_fft=config_obj.data.n_fft,
|
||||
hop_length=config_obj.data.hop_length),
|
||||
MelToImage()])
|
||||
transforms = Compose([NormalizeLocal(), ToTensor()])
|
||||
aug_transforms = Compose([
|
||||
|
@ -10,11 +10,12 @@ from einops import rearrange, repeat
|
||||
from ml_lib.modules.blocks import TransformerModule
|
||||
from ml_lib.modules.util import (LightningBaseModule, AutoPadToShape, F_x)
|
||||
from util.module_mixins import (BaseOptimizerMixin, BaseTrainMixin, BaseValMixin, DatasetMixin,
|
||||
BaseDataloadersMixin, BaseTestMixin)
|
||||
BaseDataloadersMixin, BaseTestMixin, BaseLossMixin)
|
||||
|
||||
MIN_NUM_PATCHES = 16
|
||||
|
||||
class VisualTransformer(DatasetMixin,
|
||||
BaseLossMixin,
|
||||
BaseDataloadersMixin,
|
||||
BaseTrainMixin,
|
||||
BaseValMixin,
|
||||
@ -84,8 +85,8 @@ class VisualTransformer(DatasetMixin,
|
||||
nn.Linear(self.embed_dim, self.params.lat_dim),
|
||||
nn.GELU(),
|
||||
nn.Dropout(self.params.dropout),
|
||||
nn.Linear(self.params.lat_dim, 1),
|
||||
nn.Sigmoid()
|
||||
nn.Linear(self.params.lat_dim, 10),
|
||||
nn.Softmax()
|
||||
)
|
||||
|
||||
def forward(self, x, mask=None):
|
||||
|
@ -8,11 +8,12 @@ from torch import nn
|
||||
from ml_lib.modules.blocks import TransformerModule
|
||||
from ml_lib.modules.util import (LightningBaseModule, AutoPadToShape, F_x, SlidingWindow)
|
||||
from util.module_mixins import (BaseOptimizerMixin, BaseTrainMixin, BaseValMixin, DatasetMixin,
|
||||
BaseDataloadersMixin, BaseTestMixin)
|
||||
BaseDataloadersMixin, BaseTestMixin, BaseLossMixin)
|
||||
|
||||
MIN_NUM_PATCHES = 16
|
||||
|
||||
class HorizontalVisualTransformer(DatasetMixin,
|
||||
BaseLossMixin,
|
||||
BaseDataloadersMixin,
|
||||
BaseTrainMixin,
|
||||
BaseValMixin,
|
||||
@ -35,6 +36,7 @@ class HorizontalVisualTransformer(DatasetMixin,
|
||||
# Model Paramters
|
||||
# =============================================================================
|
||||
# Additional parameters
|
||||
self.n_classes = self.dataset.train_dataset.n_classes
|
||||
self.embed_dim = self.params.embedding_size
|
||||
self.patch_size = self.params.patch_size
|
||||
self.height = height
|
||||
@ -81,8 +83,8 @@ class HorizontalVisualTransformer(DatasetMixin,
|
||||
nn.Linear(self.embed_dim, self.params.lat_dim),
|
||||
nn.GELU(),
|
||||
nn.Dropout(self.params.dropout),
|
||||
nn.Linear(self.params.lat_dim, 1),
|
||||
nn.Sigmoid()
|
||||
nn.Linear(self.params.lat_dim, 10),
|
||||
nn.Softmax()
|
||||
)
|
||||
|
||||
def forward(self, x, mask=None):
|
||||
|
@ -8,11 +8,12 @@ from torch import nn
|
||||
from ml_lib.modules.blocks import TransformerModule
|
||||
from ml_lib.modules.util import (LightningBaseModule, AutoPadToShape, F_x, SlidingWindow)
|
||||
from util.module_mixins import (BaseOptimizerMixin, BaseTrainMixin, BaseValMixin, DatasetMixin,
|
||||
BaseDataloadersMixin, BaseTestMixin)
|
||||
BaseDataloadersMixin, BaseTestMixin, BaseLossMixin)
|
||||
|
||||
MIN_NUM_PATCHES = 16
|
||||
|
||||
class VerticalVisualTransformer(DatasetMixin,
|
||||
BaseLossMixin,
|
||||
BaseDataloadersMixin,
|
||||
BaseTrainMixin,
|
||||
BaseValMixin,
|
||||
@ -80,8 +81,8 @@ class VerticalVisualTransformer(DatasetMixin,
|
||||
nn.Linear(self.embed_dim, self.params.lat_dim),
|
||||
nn.GELU(),
|
||||
nn.Dropout(self.params.dropout),
|
||||
nn.Linear(self.params.lat_dim, 1),
|
||||
nn.Sigmoid()
|
||||
nn.Linear(self.params.lat_dim, 10),
|
||||
nn.Softmax()
|
||||
)
|
||||
|
||||
def forward(self, x, mask=None):
|
||||
|
174
multi_run.py
174
multi_run.py
@ -14,64 +14,134 @@ warnings.filterwarnings('ignore', category=UserWarning)
|
||||
|
||||
if __name__ == '__main__':
|
||||
|
||||
args = main_arg_parser.parse_args()
|
||||
# Model Settings
|
||||
config = Config().read_namespace(args)
|
||||
if False:
|
||||
args = main_arg_parser.parse_args()
|
||||
# Model Settings
|
||||
config = Config().read_namespace(args)
|
||||
|
||||
arg_dict = dict()
|
||||
for seed in range(1):
|
||||
arg_dict.update(main_seed=seed)
|
||||
if False:
|
||||
for patch_size in [3, 5 , 9]:
|
||||
for model in ['VerticalVisualTransformer']:
|
||||
arg_dict.update(model_type=model, model_patch_size=patch_size)
|
||||
raw_conf = dict(data_speed_amount=0.0, data_speed_min=0.0, data_speed_max=0.0,
|
||||
data_mask_ratio=0.0, data_noise_ratio=0.0, data_shift_ratio=0.0, data_loudness_ratio=0.0,
|
||||
data_stretch=False, train_epochs=401)
|
||||
arg_dict = dict()
|
||||
for seed in range(1):
|
||||
arg_dict.update(main_seed=seed)
|
||||
if False:
|
||||
for patch_size in [3, 5 , 9]:
|
||||
for model in ['VerticalVisualTransformer']:
|
||||
arg_dict.update(model_type=model, model_patch_size=patch_size)
|
||||
raw_conf = dict(data_speed_amount=0.0, data_speed_min=0.0, data_speed_max=0.0,
|
||||
data_mask_ratio=0.0, data_noise_ratio=0.0, data_shift_ratio=0.0, data_loudness_ratio=0.0,
|
||||
data_stretch=False, train_epochs=401)
|
||||
|
||||
all_conf = dict(data_speed_amount=0.4, data_speed_min=0.7, data_speed_max=1.7,
|
||||
data_mask_ratio=0.2, data_noise_ratio=0.4, data_shift_ratio=0.4, data_loudness_ratio=0.4,
|
||||
data_stretch=True, train_epochs=101)
|
||||
all_conf = dict(data_speed_amount=0.4, data_speed_min=0.7, data_speed_max=1.7,
|
||||
data_mask_ratio=0.2, data_noise_ratio=0.4, data_shift_ratio=0.4, data_loudness_ratio=0.4,
|
||||
data_stretch=True, train_epochs=101)
|
||||
|
||||
speed_conf = raw_conf.copy()
|
||||
speed_conf.update(data_speed_amount=0.4, data_speed_min=0.7, data_speed_max=1.7,
|
||||
data_stretch=True, train_epochs=101)
|
||||
speed_conf = raw_conf.copy()
|
||||
speed_conf.update(data_speed_amount=0.4, data_speed_min=0.7, data_speed_max=1.7,
|
||||
data_stretch=True, train_epochs=101)
|
||||
|
||||
mask_conf = raw_conf.copy()
|
||||
mask_conf.update(data_mask_ratio=0.2, data_stretch=True, train_epochs=101)
|
||||
mask_conf = raw_conf.copy()
|
||||
mask_conf.update(data_mask_ratio=0.2, data_stretch=True, train_epochs=101)
|
||||
|
||||
noise_conf = raw_conf.copy()
|
||||
noise_conf.update(data_noise_ratio=0.4, data_stretch=True, train_epochs=101)
|
||||
noise_conf = raw_conf.copy()
|
||||
noise_conf.update(data_noise_ratio=0.4, data_stretch=True, train_epochs=101)
|
||||
|
||||
shift_conf = raw_conf.copy()
|
||||
shift_conf.update(data_shift_ratio=0.4, data_stretch=True, train_epochs=101)
|
||||
shift_conf = raw_conf.copy()
|
||||
shift_conf.update(data_shift_ratio=0.4, data_stretch=True, train_epochs=101)
|
||||
|
||||
loudness_conf = raw_conf.copy()
|
||||
loudness_conf.update(data_loudness_ratio=0.4, data_stretch=True, train_epochs=101)
|
||||
loudness_conf = raw_conf.copy()
|
||||
loudness_conf.update(data_loudness_ratio=0.4, data_stretch=True, train_epochs=101)
|
||||
|
||||
for dicts in [raw_conf, all_conf, speed_conf, mask_conf, noise_conf, shift_conf, loudness_conf]:
|
||||
for dicts in [raw_conf, all_conf, speed_conf, mask_conf, noise_conf, shift_conf, loudness_conf]:
|
||||
|
||||
arg_dict.update(dicts)
|
||||
if True:
|
||||
for patch_size in [7]:
|
||||
for lat_dim in [32]:
|
||||
for heads in [8]:
|
||||
for embedding_size in [7**2]:
|
||||
for attn_depth in [1, 3, 5, 7]:
|
||||
for model in ['HorizontalVisualTransformer']:
|
||||
arg_dict.update(
|
||||
model_type=model,
|
||||
model_patch_size=patch_size,
|
||||
model_lat_dim=lat_dim,
|
||||
model_heads=heads,
|
||||
model_embedding_size=embedding_size,
|
||||
model_attn_depth=attn_depth
|
||||
)
|
||||
config = config.update(arg_dict)
|
||||
version_path = config.exp_path / config.version
|
||||
if version_path.exists():
|
||||
if not (version_path / 'weights.ckpt').exists():
|
||||
shutil.rmtree(version_path)
|
||||
else:
|
||||
continue
|
||||
run_lightning_loop(config)
|
||||
|
||||
import matplotlib
|
||||
import matplotlib.pyplot as plt
|
||||
import matplotlib.cm as cm
|
||||
import numpy as np
|
||||
|
||||
from diffractio import degrees, mm, plt, sp, um, np
|
||||
from diffractio.scalar_fields_XY import Scalar_field_XY
|
||||
from diffractio.utils_drawing import draw_several_fields
|
||||
from diffractio.scalar_masks_XY import Scalar_mask_XY
|
||||
from diffractio.scalar_sources_XY import Scalar_source_XY
|
||||
|
||||
from matplotlib import rcParams
|
||||
|
||||
rcParams['figure.figsize']=(7,5)
|
||||
rcParams['figure.dpi']=75
|
||||
|
||||
period = 20 * um
|
||||
num_pixels = 512
|
||||
|
||||
length = 250 * um
|
||||
x0 = np.linspace(-length / 2, length / 2, num_pixels)
|
||||
y0 = np.linspace(-length / 2, length / 2, num_pixels)
|
||||
wavelength = 0.6238 * um
|
||||
|
||||
u1 = Scalar_source_XY(x=x0, y=y0, wavelength=wavelength)
|
||||
u1.plane_wave(A=1, theta=0 * degrees, phi=0 * degrees)
|
||||
|
||||
t1 = Scalar_mask_XY(x=x0, y=y0, wavelength=wavelength)
|
||||
t1.forked_grating(kind='amplitude',
|
||||
r0=(0 * um, 0 * um), period=period, l=3, alpha=2, angle=0 * degrees)
|
||||
|
||||
u2 = u1 * t1
|
||||
|
||||
t2 = Scalar_mask_XY(x=x0, y=y0, wavelength=wavelength)
|
||||
t2.roughness(t=(20 * um, 20 * um), s=1 * um)
|
||||
|
||||
u2 = u2 * t2
|
||||
u2.draw(kind='phase')
|
||||
|
||||
u3 = u2.RS(z=1 * mm, new_field=True)
|
||||
|
||||
u4 = u2.RS(z=5 * mm, new_field=True)
|
||||
|
||||
u5 = u2.RS(z=10 * mm, new_field=True)
|
||||
|
||||
print('draw')
|
||||
|
||||
draw_several_fields((u3, u4, u5), titulos=('1 mm', '5 mm', '10 mm'), logarithm=True)
|
||||
|
||||
plt.show()
|
||||
|
||||
pass
|
||||
|
||||
u2 = t2 * u1
|
||||
u2.draw(kind='phase')
|
||||
|
||||
u3 = u2.RS(z=1 * mm, new_field=True)
|
||||
|
||||
u4 = u2.RS(z=5 * mm, new_field=True)
|
||||
|
||||
u5 = u2.RS(z=10 * mm, new_field=True)
|
||||
|
||||
print('draw')
|
||||
|
||||
draw_several_fields((u3, u4, u5), titulos=('1 mm', '5 mm', '10 mm'), logarithm=True)
|
||||
|
||||
plt.show()
|
||||
|
||||
arg_dict.update(dicts)
|
||||
if True:
|
||||
for patch_size in [7]:
|
||||
for lat_dim in [32]:
|
||||
for heads in [8]:
|
||||
for embedding_size in [7**2]:
|
||||
for attn_depth in [1, 3, 5, 7]:
|
||||
for model in ['HorizontalVisualTransformer']:
|
||||
arg_dict.update(
|
||||
model_type=model,
|
||||
model_patch_size=patch_size,
|
||||
model_lat_dim=lat_dim,
|
||||
model_heads=heads,
|
||||
model_embedding_size=embedding_size,
|
||||
model_attn_depth=attn_depth
|
||||
)
|
||||
config = config.update(arg_dict)
|
||||
version_path = config.exp_path / config.version
|
||||
if version_path.exists():
|
||||
if not (version_path / 'weights.ckpt').exists():
|
||||
shutil.rmtree(version_path)
|
||||
else:
|
||||
continue
|
||||
run_lightning_loop(config)
|
||||
|
@ -1,11 +1,17 @@
|
||||
from collections import defaultdict
|
||||
|
||||
# Imports from python Internals
|
||||
from abc import ABC
|
||||
from argparse import Namespace
|
||||
from itertools import cycle
|
||||
from collections import defaultdict, namedtuple
|
||||
|
||||
import sklearn
|
||||
import torch
|
||||
# Numerical Imports, Metrics and Plotting
|
||||
import numpy as np
|
||||
from sklearn.ensemble import IsolationForest
|
||||
from sklearn.metrics import confusion_matrix, ConfusionMatrixDisplay, roc_auc_score, roc_curve, auc, f1_score, \
|
||||
recall_score, average_precision_score
|
||||
from matplotlib import pyplot as plt
|
||||
|
||||
# Import Deep Learning Framework
|
||||
import torch
|
||||
from torch import nn
|
||||
from torch.optim import Adam
|
||||
from torch.optim.lr_scheduler import CosineAnnealingWarmRestarts
|
||||
@ -13,15 +19,25 @@ from torch.utils.data import DataLoader
|
||||
from torchcontrib.optim import SWA
|
||||
from torchvision.transforms import Compose, RandomApply
|
||||
|
||||
from ml_lib.audio_toolset.audio_augmentation import Speed
|
||||
# Import Functions and Modules from MLLIB
|
||||
from ml_lib.audio_toolset.mel_augmentation import NoiseInjection, LoudnessManipulator, ShiftTime, MaskAug
|
||||
from ml_lib.audio_toolset.audio_io import AudioToMel, MelToImage, NormalizeLocal
|
||||
from ml_lib.audio_toolset.audio_io import NormalizeLocal
|
||||
from ml_lib.modules.util import LightningBaseModule
|
||||
from ml_lib.utils.tools import to_one_hot
|
||||
from ml_lib.utils.transforms import ToTensor
|
||||
|
||||
# Import Project Variables
|
||||
import variables as V
|
||||
|
||||
|
||||
class BaseLossMixin:
|
||||
|
||||
absolute_loss = nn.L1Loss()
|
||||
nll_loss = nn.NLLLoss()
|
||||
bce_loss = nn.BCELoss()
|
||||
ce_loss = nn.CrossEntropyLoss()
|
||||
|
||||
|
||||
class BaseOptimizerMixin:
|
||||
|
||||
def configure_optimizers(self):
|
||||
@ -60,16 +76,12 @@ class BaseOptimizerMixin:
|
||||
|
||||
class BaseTrainMixin:
|
||||
|
||||
absolute_loss = nn.L1Loss()
|
||||
nll_loss = nn.NLLLoss()
|
||||
bce_loss = nn.BCELoss()
|
||||
|
||||
def training_step(self, batch_xy, batch_nb, *args, **kwargs):
|
||||
assert isinstance(self, LightningBaseModule)
|
||||
batch_x, batch_y = batch_xy
|
||||
y = self(batch_x).main_out
|
||||
bce_loss = self.bce_loss(y.squeeze(), batch_y)
|
||||
return dict(loss=bce_loss)
|
||||
loss = self.ce_loss(y.squeeze(), batch_y.long())
|
||||
return dict(loss=loss)
|
||||
|
||||
def training_epoch_end(self, outputs):
|
||||
assert isinstance(self, LightningBaseModule)
|
||||
@ -84,55 +96,39 @@ class BaseTrainMixin:
|
||||
|
||||
class BaseValMixin:
|
||||
|
||||
absolute_loss = nn.L1Loss()
|
||||
nll_loss = nn.NLLLoss()
|
||||
bce_loss = nn.BCELoss()
|
||||
|
||||
def validation_step(self, batch_xy, batch_idx, dataloader_idx, *args, **kwargs):
|
||||
def validation_step(self, batch_xy, batch_idx, *args, **kwargs):
|
||||
assert isinstance(self, LightningBaseModule)
|
||||
batch_x, batch_y = batch_xy
|
||||
y = self(batch_x).main_out
|
||||
val_bce_loss = self.bce_loss(y.squeeze(), batch_y)
|
||||
return dict(val_bce_loss=val_bce_loss,
|
||||
val_loss = self.ce_loss(y.squeeze(), batch_y.long())
|
||||
return dict(val_loss=val_loss,
|
||||
batch_idx=batch_idx, y=y, batch_y=batch_y)
|
||||
|
||||
def validation_epoch_end(self, outputs, *_, **__):
|
||||
assert isinstance(self, LightningBaseModule)
|
||||
summary_dict = dict()
|
||||
for output_idx, output in enumerate(outputs):
|
||||
keys = list(output[0].keys())
|
||||
ident = '' if output_idx == 0 else '_train'
|
||||
summary_dict.update({f'mean{ident}_{key}': torch.mean(torch.stack([output[key]
|
||||
for output in output]))
|
||||
for key in keys if 'loss' in key}
|
||||
)
|
||||
|
||||
# UnweightedAverageRecall
|
||||
y_true = torch.cat([output['batch_y'] for output in output]) .cpu().numpy()
|
||||
y_pred = torch.cat([output['y'] for output in output]).squeeze().cpu().numpy()
|
||||
keys = list(outputs[0].keys())
|
||||
summary_dict.update({f'mean_{key}': torch.mean(torch.stack([output[key]
|
||||
for output in outputs]))
|
||||
for key in keys if 'loss' in key}
|
||||
)
|
||||
|
||||
y_pred = (y_pred >= 0.5).astype(np.float32)
|
||||
additional_scores = self.additional_scores(outputs)
|
||||
summary_dict.update(**additional_scores)
|
||||
|
||||
uar_score = sklearn.metrics.recall_score(y_true, y_pred, labels=[0, 1], average='macro',
|
||||
sample_weight=None, zero_division='warn')
|
||||
uar_score = torch.as_tensor(uar_score)
|
||||
summary_dict.update({f'uar{ident}_score': uar_score})
|
||||
for key in summary_dict.keys():
|
||||
self.log(key, summary_dict[key])
|
||||
for key in summary_dict.keys():
|
||||
self.log(key, summary_dict[key])
|
||||
|
||||
|
||||
class BaseTestMixin:
|
||||
|
||||
absolute_loss = nn.L1Loss()
|
||||
nll_loss = nn.NLLLoss()
|
||||
bce_loss = nn.BCELoss()
|
||||
|
||||
def test_step(self, batch_xy, batch_idx, dataloader_idx, *args, **kwargs):
|
||||
def test_step(self, batch_xy, batch_idx, *_, **__):
|
||||
assert isinstance(self, LightningBaseModule)
|
||||
batch_x, batch_y = batch_xy
|
||||
y = self(batch_x).main_out
|
||||
test_bce_loss = self.bce_loss(y.squeeze(), batch_y)
|
||||
return dict(test_bce_loss=test_bce_loss,
|
||||
test_loss = self.ce_loss(y.squeeze(), batch_y.long())
|
||||
return dict(test_loss=test_loss,
|
||||
batch_idx=batch_idx, y=y, batch_y=batch_y)
|
||||
|
||||
def test_epoch_end(self, outputs, *_, **__):
|
||||
@ -145,16 +141,9 @@ class BaseTestMixin:
|
||||
for key in keys if 'loss' in key}
|
||||
)
|
||||
|
||||
# UnweightedAverageRecall
|
||||
y_true = torch.cat([output['batch_y'] for output in outputs]) .cpu().numpy()
|
||||
y_pred = torch.cat([output['y'] for output in outputs]).squeeze().cpu().numpy()
|
||||
additional_scores = self.additional_scores(outputs)
|
||||
summary_dict.update(**additional_scores)
|
||||
|
||||
y_pred = (y_pred >= 0.5).astype(np.float32)
|
||||
|
||||
uar_score = sklearn.metrics.recall_score(y_true, y_pred, labels=[0, 1], average='macro',
|
||||
sample_weight=None, zero_division='warn')
|
||||
uar_score = torch.as_tensor(uar_score)
|
||||
summary_dict.update({f'uar_score': uar_score})
|
||||
for key in summary_dict.keys():
|
||||
self.log(key, summary_dict[key])
|
||||
|
||||
@ -167,53 +156,56 @@ class DatasetMixin:
|
||||
# Dataset
|
||||
# =============================================================================
|
||||
# Mel Transforms
|
||||
mel_transforms = Compose([
|
||||
# Audio to Mel Transformations
|
||||
AudioToMel(sr=self.params.sr,
|
||||
n_mels=self.params.n_mels,
|
||||
n_fft=self.params.n_fft,
|
||||
hop_length=self.params.hop_length),
|
||||
MelToImage()])
|
||||
|
||||
mel_transforms_train = Compose([
|
||||
# Audio to Mel Transformations
|
||||
Speed(max_amount=self.params.speed_amount,
|
||||
speed_min=self.params.speed_min,
|
||||
speed_max=self.params.speed_max
|
||||
),
|
||||
mel_transforms])
|
||||
mel_kwargs = dict(sample_rate=self.params.sr,
|
||||
n_mels=self.params.n_mels,
|
||||
n_fft=self.params.n_fft,
|
||||
hop_length=self.params.hop_length)
|
||||
|
||||
# Utility
|
||||
util_transforms = Compose([NormalizeLocal(), ToTensor()])
|
||||
normalize = NormalizeLocal()
|
||||
|
||||
# Data Augmentations
|
||||
aug_transforms = Compose([
|
||||
mel_augmentations = Compose([
|
||||
RandomApply([
|
||||
NoiseInjection(self.params.noise_ratio),
|
||||
LoudnessManipulator(self.params.loudness_ratio),
|
||||
ShiftTime(self.params.shift_ratio),
|
||||
MaskAug(self.params.mask_ratio),
|
||||
NoiseInjection(0.2),
|
||||
LoudnessManipulator(0.5),
|
||||
ShiftTime(0.4),
|
||||
MaskAug(0.2),
|
||||
], p=0.6),
|
||||
util_transforms])
|
||||
normalize])
|
||||
|
||||
# Datasets
|
||||
dataset = Namespace(
|
||||
**dict(
|
||||
# TRAIN DATASET
|
||||
train_dataset=self.dataset_class(self.params.root, setting=V.DATA_OPTIONS.train,
|
||||
use_preprocessed=self.params.use_preprocessed,
|
||||
stretch_dataset=self.params.stretch,
|
||||
mel_transforms=mel_transforms_train, transforms=aug_transforms),
|
||||
# VALIDATION DATASET
|
||||
val_train_dataset=self.dataset_class(self.params.root, setting=V.DATA_OPTIONS.train,
|
||||
mel_transforms=mel_transforms, transforms=util_transforms),
|
||||
val_dataset=self.dataset_class(self.params.root, setting=V.DATA_OPTIONS.devel,
|
||||
mel_transforms=mel_transforms, transforms=util_transforms),
|
||||
# TEST DATASET
|
||||
test_dataset=self.dataset_class(self.params.root, setting=V.DATA_OPTIONS.test,
|
||||
mel_transforms=mel_transforms, transforms=util_transforms),
|
||||
)
|
||||
)
|
||||
Dataset = namedtuple('Datasets', 'train_dataset val_dataset test_dataset')
|
||||
dataset = Dataset(self.dataset_class(data_root=self.params.root, # TRAIN DATASET
|
||||
setting=V.DATA_OPTION_train,
|
||||
fold=list(range(1,8)),
|
||||
reset=self.params.reset,
|
||||
mel_kwargs=mel_kwargs,
|
||||
mel_augmentations=mel_augmentations),
|
||||
val_dataset=self.dataset_class(data_root=self.params.root, # VALIDATION DATASET
|
||||
setting=V.DATA_OPTION_devel,
|
||||
fold=9,
|
||||
reset=self.params.reset,
|
||||
mel_kwargs=mel_kwargs,
|
||||
mel_augmentations=normalize),
|
||||
test_dataset=self.dataset_class(data_root=self.params.root, # TEST DATASET
|
||||
setting=V.DATA_OPTION_test,
|
||||
fold=10,
|
||||
reset=self.params.reset,
|
||||
mel_kwargs=mel_kwargs,
|
||||
mel_augmentations=normalize),
|
||||
)
|
||||
|
||||
if dataset.train_dataset.task_type == V.TASK_OPTION_binary:
|
||||
# noinspection PyAttributeOutsideInit
|
||||
self.additional_scores = BinaryScores(self)
|
||||
|
||||
elif dataset.train_dataset.task_type == V.TASK_OPTION_multiclass:
|
||||
# noinspection PyAttributeOutsideInit
|
||||
self.additional_scores = MultiClassScores(self)
|
||||
else:
|
||||
raise ValueError
|
||||
|
||||
return dataset
|
||||
|
||||
|
||||
@ -240,10 +232,185 @@ class BaseDataloadersMixin(ABC):
|
||||
# Validation Dataloader
|
||||
def val_dataloader(self):
|
||||
assert isinstance(self, LightningBaseModule)
|
||||
val_dataloader = DataLoader(dataset=self.dataset.val_dataset, shuffle=False, pin_memory=True,
|
||||
batch_size=self.params.batch_size, num_workers=self.params.worker)
|
||||
return DataLoader(dataset=self.dataset.val_dataset, shuffle=False, pin_memory=True,
|
||||
batch_size=self.params.batch_size, num_workers=self.params.worker)
|
||||
|
||||
train_dataloader = DataLoader(self.dataset.val_train_dataset, num_workers=self.params.worker,
|
||||
pin_memory=True,
|
||||
batch_size=self.params.batch_size, shuffle=False)
|
||||
return [val_dataloader, train_dataloader]
|
||||
|
||||
class BaseScores(ABC):
|
||||
|
||||
def __init__(self, lightning_model):
|
||||
self.model = lightning_model
|
||||
pass
|
||||
|
||||
def __call__(self, outputs):
|
||||
# summary_dict = dict()
|
||||
# return summary_dict
|
||||
raise NotImplementedError
|
||||
|
||||
|
||||
class MultiClassScores(BaseScores):
|
||||
|
||||
def __init__(self, *args):
|
||||
super(MultiClassScores, self).__init__(*args)
|
||||
pass
|
||||
|
||||
def __call__(self, outputs):
|
||||
summary_dict = dict()
|
||||
#######################################################################################
|
||||
# Additional Score - UAR - ROC - Conf. Matrix - F1
|
||||
#######################################################################################
|
||||
#
|
||||
# INIT
|
||||
y_true = torch.cat([output['batch_y'] for output in outputs]).cpu().numpy()
|
||||
y_true_one_hot = to_one_hot(y_true, self.model.n_classes)
|
||||
|
||||
y_pred = torch.cat([output['y'] for output in outputs]).squeeze().cpu().float().numpy()
|
||||
y_pred_max = np.argmax(y_pred, axis=1)
|
||||
|
||||
class_names = {val: key for key, val in self.model.dataset.test_dataset.classes.items()}
|
||||
######################################################################################
|
||||
#
|
||||
# F1 SCORE
|
||||
micro_f1_score = f1_score(y_true, y_pred_max, labels=None, pos_label=1, average='micro', sample_weight=None,
|
||||
zero_division=True)
|
||||
macro_f1_score = f1_score(y_true, y_pred_max, labels=None, pos_label=1, average='macro', sample_weight=None,
|
||||
zero_division=True)
|
||||
summary_dict.update(dict(micro_f1_score=micro_f1_score, macro_f1_score=macro_f1_score))
|
||||
|
||||
#######################################################################################
|
||||
#
|
||||
# ROC Curve
|
||||
|
||||
# Compute ROC curve and ROC area for each class
|
||||
fpr = dict()
|
||||
tpr = dict()
|
||||
roc_auc = dict()
|
||||
for i in range(self.model.n_classes):
|
||||
fpr[i], tpr[i], _ = roc_curve(y_true_one_hot[:, i], y_pred[:, i])
|
||||
roc_auc[i] = auc(fpr[i], tpr[i])
|
||||
|
||||
# Compute micro-average ROC curve and ROC area
|
||||
fpr["micro"], tpr["micro"], _ = roc_curve(y_true_one_hot.ravel(), y_pred.ravel())
|
||||
roc_auc["micro"] = auc(fpr["micro"], tpr["micro"])
|
||||
|
||||
# First aggregate all false positive rates
|
||||
all_fpr = np.unique(np.concatenate([fpr[i] for i in range(self.model.n_classes)]))
|
||||
|
||||
# Then interpolate all ROC curves at this points
|
||||
mean_tpr = np.zeros_like(all_fpr)
|
||||
for i in range(self.model.n_classes):
|
||||
mean_tpr += np.interp(all_fpr, fpr[i], tpr[i])
|
||||
|
||||
# Finally average it and compute AUC
|
||||
mean_tpr /= self.model.n_classes
|
||||
|
||||
fpr["macro"] = all_fpr
|
||||
tpr["macro"] = mean_tpr
|
||||
roc_auc["macro"] = auc(fpr["macro"], tpr["macro"])
|
||||
|
||||
# Plot all ROC curves
|
||||
plt.figure()
|
||||
plt.plot(fpr["micro"], tpr["micro"],
|
||||
label=f'micro ROC ({round(roc_auc["micro"], 2)})',
|
||||
color='deeppink', linestyle=':', linewidth=4)
|
||||
|
||||
plt.plot(fpr["macro"], tpr["macro"],
|
||||
label=f'macro ROC({round(roc_auc["macro"], 2)})',
|
||||
color='navy', linestyle=':', linewidth=4)
|
||||
|
||||
colors = cycle(['firebrick', 'orangered', 'gold', 'olive', 'limegreen', 'aqua',
|
||||
'dodgerblue', 'slategrey', 'royalblue', 'indigo', 'fuchsia'], )
|
||||
|
||||
for i, color in zip(range(self.model.n_classes), colors):
|
||||
plt.plot(fpr[i], tpr[i], color=color, lw=2, label=f'{class_names[i]} ({round(roc_auc[i], 2)})')
|
||||
|
||||
plt.plot([0, 1], [0, 1], 'k--', lw=2)
|
||||
plt.xlim([0.0, 1.0])
|
||||
plt.ylim([0.0, 1.05])
|
||||
plt.xlabel('False Positive Rate')
|
||||
plt.ylabel('True Positive Rate')
|
||||
plt.legend(loc="lower right")
|
||||
|
||||
self.model.logger.log_image('ROC', image=plt.gcf(), step=self.model.current_epoch)
|
||||
self.model.logger.log_image('ROC', image=plt.gcf(), step=self.model.current_epoch, ext='pdf')
|
||||
plt.clf()
|
||||
|
||||
#######################################################################################
|
||||
#
|
||||
# ROC SCORE
|
||||
|
||||
try:
|
||||
macro_roc_auc_ovr = roc_auc_score(y_true_one_hot, y_pred, multi_class="ovr",
|
||||
average="macro")
|
||||
summary_dict.update(macro_roc_auc_ovr=macro_roc_auc_ovr)
|
||||
except ValueError:
|
||||
micro_roc_auc_ovr = roc_auc_score(y_true_one_hot, y_pred, multi_class="ovr",
|
||||
average="micro")
|
||||
summary_dict.update(micro_roc_auc_ovr=micro_roc_auc_ovr)
|
||||
|
||||
#######################################################################################
|
||||
#
|
||||
# Confusion matrix
|
||||
|
||||
cm = confusion_matrix([class_names[x] for x in y_true], [class_names[x] for x in y_pred_max],
|
||||
labels=[class_names[key] for key in class_names.keys()],
|
||||
normalize='all')
|
||||
disp = ConfusionMatrixDisplay(confusion_matrix=cm,
|
||||
display_labels=[class_names[i] for i in range(self.model.n_classes)]
|
||||
)
|
||||
disp.plot(include_values=True)
|
||||
|
||||
self.model.logger.log_image('Confusion_Matrix', image=disp.figure_, step=self.model.current_epoch)
|
||||
self.model.logger.log_image('Confusion_Matrix', image=disp.figure_, step=self.model.current_epoch, ext='pdf')
|
||||
|
||||
plt.close('all')
|
||||
return summary_dict
|
||||
|
||||
|
||||
class BinaryScores(BaseScores):
|
||||
|
||||
def __init__(self, *args):
|
||||
super(BinaryScores, self).__init__(*args)
|
||||
|
||||
def __call__(self, outputs):
|
||||
summary_dict = dict()
|
||||
|
||||
# Additional Score like the unweighted Average Recall:
|
||||
#########################
|
||||
# UnweightedAverageRecall
|
||||
y_true = torch.cat([output['batch_y'] for output in outputs]) .cpu().numpy()
|
||||
y_pred = torch.cat([output['element_wise_recon_error'] for output in outputs]).squeeze().cpu().numpy()
|
||||
|
||||
# How to apply a threshold manualy
|
||||
# y_pred = (y_pred >= 0.5).astype(np.float32)
|
||||
|
||||
# How to apply a threshold by IF (Isolation Forest)
|
||||
clf = IsolationForest(random_state=self.model.seed)
|
||||
y_score = clf.fit_predict(y_pred.reshape(-1,1))
|
||||
y_score = (np.asarray(y_score) == -1).astype(np.float32)
|
||||
|
||||
uar_score = recall_score(y_true, y_score, labels=[0, 1], average='macro',
|
||||
sample_weight=None, zero_division='warn')
|
||||
summary_dict.update(dict(uar_score=uar_score))
|
||||
#########################
|
||||
# Precission
|
||||
precision_score = average_precision_score(y_true, y_score)
|
||||
summary_dict.update(dict(precision_score=precision_score))
|
||||
|
||||
#########################
|
||||
# AUC
|
||||
try:
|
||||
auc_score = roc_auc_score(y_true=y_true, y_score=y_score)
|
||||
summary_dict.update(dict(auc_score=auc_score))
|
||||
except ValueError:
|
||||
summary_dict.update(dict(auc_score=-1))
|
||||
|
||||
#########################
|
||||
# pAUC
|
||||
try:
|
||||
pauc = roc_auc_score(y_true=y_true, y_score=y_score, max_fpr=0.15)
|
||||
summary_dict.update(dict(pauc_score=pauc))
|
||||
except ValueError:
|
||||
summary_dict.update(dict(pauc_score=-1))
|
||||
|
||||
return summary_dict
|
||||
|
18
variables.py
18
variables.py
@ -4,8 +4,22 @@ from argparse import Namespace
|
||||
CLEAR = 0
|
||||
MASK = 1
|
||||
|
||||
NUM_CLASSES = 2
|
||||
# Task Options
|
||||
TASK_OPTION_multiclass = 'multiclass'
|
||||
N_CLASS_multi = 10
|
||||
multi_classes_names = ['air_conditioner', 'car_horn', 'children_playing',
|
||||
'dog_bar', 'drilling', 'engine_idling',
|
||||
'gun_shot', 'jackhammer', 'siren', 'street_music']
|
||||
multi_classes = {key: val for val, key in enumerate(multi_classes_names)}
|
||||
|
||||
|
||||
TASK_OPTION_binary = 'binary'
|
||||
N_CLASS_binary = 2
|
||||
binary_CLASS_clear = 0
|
||||
binary_CLASS_maske = 1
|
||||
|
||||
# Dataset Options
|
||||
DATA_OPTIONS = Namespace(test='test', devel='devel', train='train')
|
||||
DATA_OPTION_test = 'test'
|
||||
DATA_OPTION_devel = 'devel'
|
||||
DATA_OPTION_train = 'train'
|
||||
DATA_OPTIONS = [DATA_OPTION_train, DATA_OPTION_devel, DATA_OPTION_test]
|
||||
|
Loading…
x
Reference in New Issue
Block a user