transition

This commit is contained in:
Si11ium 2021-02-01 10:18:30 +01:00
parent 68431b848e
commit f1f327ef17
32 changed files with 22392 additions and 343 deletions

View File

@ -1,115 +0,0 @@
from argparse import Namespace
import warnings
import torch
from torch import nn
from einops import rearrange, repeat
from ml_lib.modules.blocks import TransformerModule
from ml_lib.modules.util import (LightningBaseModule, AutoPadToShape, F_x)
from util.module_mixins import (BaseOptimizerMixin, BaseTrainMixin, BaseValMixin, DatasetMixin,
BaseDataloadersMixin, BaseTestMixin, BaseLossMixin)
MIN_NUM_PATCHES = 16
class VisualTransformer(DatasetMixin,
BaseLossMixin,
BaseDataloadersMixin,
BaseTrainMixin,
BaseValMixin,
BaseTestMixin,
BaseOptimizerMixin,
LightningBaseModule
):
def __init__(self, hparams):
super(VisualTransformer, self).__init__(hparams)
# Dataset
# =============================================================================
self.dataset = self.build_dataset()
self.in_shape = self.dataset.train_dataset.sample_shape
assert len(self.in_shape) == 3, 'There need to be three Dimensions'
channels, height, width = self.in_shape
# Model Paramters
# =============================================================================
# Additional parameters
self.embed_dim = self.params.embedding_size
# Automatic Image Shaping
self.patch_size = self.params.patch_size
image_size = (max(height, width) // self.patch_size) * self.patch_size
self.image_size = image_size + self.patch_size if image_size < max(height, width) else image_size
# This should be obsolete
assert self.image_size % self.patch_size == 0, 'image dimensions must be divisible by the patch size'
num_patches = (self.image_size // self.patch_size) ** 2
patch_dim = channels * self.patch_size ** 2
assert num_patches >= MIN_NUM_PATCHES, f'your number of patches ({num_patches}) is way too small for ' + \
f'attention. Try decreasing your patch size'
# Correct the Embedding Dim
if not self.embed_dim % self.params.heads == 0:
self.embed_dim = (self.embed_dim // self.params.heads) * self.params.heads
message = ('Embedding Dimension was fixed to be devideable by the number' +
f' of attention heads, is now: {self.embed_dim}')
for func in print, warnings.warn:
func(message)
# Utility Modules
self.autopad = AutoPadToShape((self.image_size, self.image_size))
# Modules with Parameters
self.transformer = TransformerModule(in_shape=self.embed_dim, hidden_size=self.params.lat_dim,
n_heads=self.params.heads, num_layers=self.params.attn_depth,
dropout=self.params.dropout, use_norm=self.params.use_norm,
activation=self.params.activation_as_string
)
self.pos_embedding = nn.Parameter(torch.randn(1, num_patches + 1, self.embed_dim))
self.patch_to_embedding = nn.Linear(patch_dim, self.embed_dim) if self.params.embedding_size \
else F_x(self.embed_dim)
self.cls_token = nn.Parameter(torch.randn(1, 1, self.embed_dim))
self.dropout = nn.Dropout(self.params.dropout)
self.to_cls_token = nn.Identity()
self.mlp_head = nn.Sequential(
nn.LayerNorm(self.embed_dim),
nn.Linear(self.embed_dim, self.params.lat_dim),
nn.GELU(),
nn.Dropout(self.params.dropout),
nn.Linear(self.params.lat_dim, 10),
nn.Softmax()
)
def forward(self, x, mask=None):
"""
:param x: the sequence to the encoder (required).
:param mask: the mask for the src sequence (optional).
:return:
"""
tensor = self.autopad(x)
p = self.params.patch_size
tensor = rearrange(tensor, 'b c (h p1) (w p2) -> b (h w) (p1 p2 c)', p1 = p, p2 = p)
tensor = self.patch_to_embedding(tensor)
b, n, _ = tensor.shape
cls_tokens = repeat(self.cls_token, '() n d -> b n d', b = b)
tensor = torch.cat((cls_tokens, tensor), dim=1)
tensor += self.pos_embedding[:, :(n + 1)]
tensor = self.dropout(tensor)
tensor = self.transformer(tensor, mask)
tensor = self.to_cls_token(tensor[:, 0])
tensor = self.mlp_head(tensor)
return Namespace(main_out=tensor)

View File

@ -1,113 +0,0 @@
from argparse import Namespace
import warnings
import torch
from torch import nn
from ml_lib.modules.blocks import TransformerModule
from ml_lib.modules.util import (LightningBaseModule, AutoPadToShape, F_x, SlidingWindow)
from util.module_mixins import (BaseOptimizerMixin, BaseTrainMixin, BaseValMixin, DatasetMixin,
BaseDataloadersMixin, BaseTestMixin, BaseLossMixin)
MIN_NUM_PATCHES = 16
class HorizontalVisualTransformer(DatasetMixin,
BaseLossMixin,
BaseDataloadersMixin,
BaseTrainMixin,
BaseValMixin,
BaseTestMixin,
BaseOptimizerMixin,
LightningBaseModule
):
def __init__(self, hparams):
super(HorizontalVisualTransformer, self).__init__(hparams)
# Dataset
# =============================================================================
self.dataset = self.build_dataset()
self.in_shape = self.dataset.train_dataset.sample_shape
assert len(self.in_shape) == 3, 'There need to be three Dimensions'
channels, height, width = self.in_shape
# Model Paramters
# =============================================================================
# Additional parameters
self.n_classes = self.dataset.train_dataset.n_classes
self.embed_dim = self.params.embedding_size
self.patch_size = self.params.patch_size
self.height = height
self.width = width
self.channels = channels
self.new_height = ((self.height - self.patch_size)//1) + 1
num_patches = self.new_height - (self.patch_size // 2)
patch_dim = channels * self.patch_size * self.width
assert num_patches >= MIN_NUM_PATCHES, f'your number of patches ({num_patches}) is way too small for ' + \
f'attention. Try decreasing your patch size'
# Correct the Embedding Dim
if not self.embed_dim % self.params.heads == 0:
self.embed_dim = (self.embed_dim // self.params.heads) * self.params.heads
message = ('Embedding Dimension was fixed to be devideable by the number' +
f' of attention heads, is now: {self.embed_dim}')
for func in print, warnings.warn:
func(message)
# Utility Modules
self.autopad = AutoPadToShape((self.new_height, self.width))
self.dropout = nn.Dropout(self.params.dropout)
self.slider = SlidingWindow((channels, *self.autopad.target_shape), (self.patch_size, self.width),
keepdim=False)
# Modules with Parameters
self.transformer = TransformerModule(in_shape=self.embed_dim, hidden_size=self.params.lat_dim,
n_heads=self.params.heads, num_layers=self.params.attn_depth,
dropout=self.params.dropout, use_norm=self.params.use_norm,
activation=self.params.activation_as_string
)
self.pos_embedding = nn.Parameter(torch.randn(1, num_patches + 1, self.embed_dim))
self.patch_to_embedding = nn.Linear(patch_dim, self.embed_dim) if self.params.embedding_size \
else F_x(self.embed_dim)
self.cls_token = nn.Parameter(torch.randn(1, 1, self.embed_dim))
self.to_cls_token = nn.Identity()
self.mlp_head = nn.Sequential(
nn.LayerNorm(self.embed_dim),
nn.Linear(self.embed_dim, self.params.lat_dim),
nn.GELU(),
nn.Dropout(self.params.dropout),
nn.Linear(self.params.lat_dim, 10),
nn.Softmax()
)
def forward(self, x, mask=None):
"""
:param x: the sequence to the encoder (required).
:param mask: the mask for the src sequence (optional).
:return:
"""
tensor = self.autopad(x)
tensor = self.slider(tensor)
tensor = self.patch_to_embedding(tensor)
b, n, _ = tensor.shape
# cls_tokens = repeat(self.cls_token, '() n d -> b n d', b = b)
cls_tokens = self.cls_token.repeat((b, 1, 1))
tensor = torch.cat((cls_tokens, tensor), dim=1)
tensor += self.pos_embedding[:, :(n + 1)]
tensor = self.dropout(tensor)
tensor = self.transformer(tensor, mask)
tensor = self.to_cls_token(tensor[:, 0])
tensor = self.mlp_head(tensor)
return Namespace(main_out=tensor)

View File

@ -1,111 +0,0 @@
from argparse import Namespace
import warnings
import torch
from torch import nn
from ml_lib.modules.blocks import TransformerModule
from ml_lib.modules.util import (LightningBaseModule, AutoPadToShape, F_x, SlidingWindow)
from util.module_mixins import (BaseOptimizerMixin, BaseTrainMixin, BaseValMixin, DatasetMixin,
BaseDataloadersMixin, BaseTestMixin, BaseLossMixin)
MIN_NUM_PATCHES = 16
class VerticalVisualTransformer(DatasetMixin,
BaseLossMixin,
BaseDataloadersMixin,
BaseTrainMixin,
BaseValMixin,
BaseTestMixin,
BaseOptimizerMixin,
LightningBaseModule
):
def __init__(self, hparams):
super(VerticalVisualTransformer, self).__init__(hparams)
# Dataset
# =============================================================================
self.dataset = self.build_dataset()
self.in_shape = self.dataset.train_dataset.sample_shape
assert len(self.in_shape) == 3, 'There need to be three Dimensions'
channels, height, width = self.in_shape
# Model Paramters
# =============================================================================
# Additional parameters
self.embed_dim = self.params.embedding_size
self.patch_size = self.params.patch_size
self.height = height
self.width = width
self.channels = channels
self.new_width = ((self.width - self.patch_size)//1) + 1
num_patches = self.new_width - (self.patch_size // 2)
patch_dim = channels * self.patch_size * self.height
assert num_patches >= MIN_NUM_PATCHES, f'your number of patches ({num_patches}) is way too small for ' + \
f'attention. Try decreasing your patch size'
# Correct the Embedding Dim
if not self.embed_dim % self.params.heads == 0:
self.embed_dim = (self.embed_dim // self.params.heads) * self.params.heads
message = ('Embedding Dimension was fixed to be devideable by the number' +
f' of attention heads, is now: {self.embed_dim}')
for func in print, warnings.warn:
func(message)
# Utility Modules
self.autopad = AutoPadToShape((self.height, self.new_width))
self.dropout = nn.Dropout(self.params.dropout)
self.slider = SlidingWindow((channels, *self.autopad.target_shape), (self.height, self.patch_size), keepdim=False)
# Modules with Parameters
self.transformer = TransformerModule(in_shape=self.embed_dim, hidden_size=self.params.lat_dim,
n_heads=self.params.heads, num_layers=self.params.attn_depth,
dropout=self.params.dropout, use_norm=self.params.use_norm,
activation=self.params.activation_as_string
)
self.pos_embedding = nn.Parameter(torch.randn(1, num_patches + 1, self.embed_dim))
self.patch_to_embedding = nn.Linear(patch_dim, self.embed_dim) if self.params.embedding_size \
else F_x(self.embed_dim)
self.cls_token = nn.Parameter(torch.randn(1, 1, self.embed_dim))
self.to_cls_token = nn.Identity()
self.mlp_head = nn.Sequential(
nn.LayerNorm(self.embed_dim),
nn.Linear(self.embed_dim, self.params.lat_dim),
nn.GELU(),
nn.Dropout(self.params.dropout),
nn.Linear(self.params.lat_dim, 10),
nn.Softmax()
)
def forward(self, x, mask=None):
"""
:param x: the sequence to the encoder (required).
:param mask: the mask for the src sequence (optional).
:return:
"""
tensor = self.autopad(x)
tensor = self.slider(tensor)
tensor = self.patch_to_embedding(tensor)
b, n, _ = tensor.shape
# cls_tokens = repeat(self.cls_token, '() n d -> b n d', b = b)
cls_tokens = self.cls_token.repeat((b, 1, 1))
tensor = torch.cat((cls_tokens, tensor), dim=1)
tensor += self.pos_embedding[:, :(n + 1)]
tensor = self.dropout(tensor)
tensor = self.transformer(tensor, mask)
tensor = self.to_cls_token(tensor[:, 0])
tensor = self.mlp_head(tensor)
return Namespace(main_out=tensor)

File diff suppressed because it is too large Load Diff

BIN
output/CC.pdf Normal file

Binary file not shown.

BIN
output/SSC.pdf Normal file

Binary file not shown.

BIN
output/SSC2.pdf Normal file

Binary file not shown.

BIN
output/SSN.pdf Normal file

Binary file not shown.

BIN
output/SSN2.pdf Normal file

Binary file not shown.

BIN
output/all_2.png Normal file

Binary file not shown.

After

Width:  |  Height:  |  Size: 20 KiB

BIN
output/desc.pdf Normal file

Binary file not shown.

BIN
output/desc2.pdf Normal file

Binary file not shown.

1
output/drawings.drawio Normal file

File diff suppressed because one or more lines are too long

BIN
output/ensemble.pdf Normal file

Binary file not shown.

BIN
output/loudness.png Normal file

Binary file not shown.

After

Width:  |  Height:  |  Size: 21 KiB

11013
output/manual_test_out.csv Normal file

File diff suppressed because it is too large Load Diff

BIN
output/mask.png Normal file

Binary file not shown.

After

Width:  |  Height:  |  Size: 17 KiB

16
output/metrics.csv Normal file
View File

@ -0,0 +1,16 @@
worker,root,class_name,normalized,use_preprocessed,n_mels,sr,hop_length,n_fft,mixup,stretch,loudness_ratio,shift_ratio,noise_ratio,mask_ratio,speed_ratio,speed_factor,mean,max,median,std
11,data,BinaryMasksDataset,True,False,64,16000,256,512,False,True,0,0,0,0,0,0,63.79,63.97,63.85,0.19
11,data,BinaryMasksDataset,True,False,64,16000,256,512,False,True,0,0,0,0,0,0,64.2,64.9,64.02,0.5
11,data,BinaryMasksDataset,True,False,64,16000,256,512,False,True,0,0,0,0,0,0,63.34,63.92,63.45,0.49
11,data,BinaryMasksDataset,True,False,64,16000,256,512,False,True,0,0,0,0,0,0,63.92,64.34,63.91,0.25
11,data,BinaryMasksDataset,True,False,64,16000,256,512,False,True,0,0,0,0,0,0,64.72,65.38,64.6,0.51
11,data,BinaryMasksDataset,True,True,64,16000,256,512,False,False,0,0,0,0,0,0,60.36,64.16,63.41,5.31
11,data,BinaryMasksDataset,True,True,64,16000,256,512,False,False,0,0,0,0,0,0,58.4,64.18,63.86,6.85
11,data,BinaryMasksDataset,True,True,64,16000,256,512,False,False,0,0,0,0,0,0,60.09,63.61,63.26,5.19
11,data,BinaryMasksDataset,True,True,64,16000,256,512,False,False,0,0,0,0,0,0,59.96,64.34,63.32,5.4
11,data,BinaryMasksDataset,True,True,64,16000,256,512,False,False,0,0,0,0,0,0,60.94,64.59,64.11,5.56
11,data,BinaryMasksDataset,True,True,64,16000,256,512,False,0,0,0.3,0,0.3,0.7,50.0,50.0,50.0,0.0
11,data,BinaryMasksDataset,True,True,64,16000,256,512,False,0,0,0.3,0,0.3,0.7,62.1,65.51,64.9,5.48
11,data,BinaryMasksDataset,True,True,64,16000,256,512,False,0,0,0.3,0,0.3,0.7,61.29,64.76,64.31,5.68
11,data,BinaryMasksDataset,True,True,64,16000,256,512,False,0,0,0.3,0,0.3,0.7,63.65,64.97,63.96,0.92
11,data,BinaryMasksDataset,True,True,64,16000,256,512,False,0,0,0.3,0,0.3,0.7,64.59,65.51,64.43,0.76
Can't render this file because it has a wrong number of fields in line 12.

BIN
output/noise.png Normal file

Binary file not shown.

After

Width:  |  Height:  |  Size: 26 KiB

View File

@ -0,0 +1,8 @@
loudness_ratio,shift_ratio,noise_ratio,mask_ratio,speed_amount,speed_min,speed_max,exp_path,exp_fingerprint,mean_decb_0.1_mean,mean_decb_0.1_std,majority_decb_0.1_mean,majority_decb_0.1_std,mean_decb_0.15_mean,mean_decb_0.15_std,majority_decb_0.15_mean,majority_decb_0.15_std,mean_decb_0.2_mean,mean_decb_0.2_std,majority_decb_0.2_mean,majority_decb_0.2_std,mean_decb_0.25_mean,mean_decb_0.25_std,majority_decb_0.25_mean,majority_decb_0.25_std,mean_decb_0.3_mean,mean_decb_0.3_std,majority_decb_0.3_mean,majority_decb_0.3_std,mean_decb_0.35000000000000003_mean,mean_decb_0.35000000000000003_std,majority_decb_0.35000000000000003_mean,majority_decb_0.35000000000000003_std,mean_decb_0.4_mean,mean_decb_0.4_std,majority_decb_0.4_mean,majority_decb_0.4_std,mean_decb_0.45_mean,mean_decb_0.45_std,majority_decb_0.45_mean,majority_decb_0.45_std,mean_decb_0.5_mean,mean_decb_0.5_std,majority_decb_0.5_mean,majority_decb_0.5_std,mean_decb_0.55_mean,mean_decb_0.55_std,majority_decb_0.55_mean,majority_decb_0.55_std,mean_decb_0.6_mean,mean_decb_0.6_std,majority_decb_0.6_mean,majority_decb_0.6_std,mean_decb_0.65_mean,mean_decb_0.65_std,majority_decb_0.65_mean,majority_decb_0.65_std,mean_decb_0.7000000000000001_mean,mean_decb_0.7000000000000001_std,majority_decb_0.7000000000000001_mean,majority_decb_0.7000000000000001_std,mean_decb_0.75_mean,mean_decb_0.75_std,majority_decb_0.75_mean,majority_decb_0.75_std,mean_decb_0.8_mean,mean_decb_0.8_std,majority_decb_0.8_mean,majority_decb_0.8_std,mean_decb_0.85_mean,mean_decb_0.85_std,majority_decb_0.85_mean,majority_decb_0.85_std,mean_decb_0.9_mean,mean_decb_0.9_std,majority_decb_0.9_mean,majority_decb_0.9_std
0.0,0.0,0.4,0.0,0.0,0.0,0.0,output/RCC/RCC_eda61b0dbeef45eb9834eb99abf3de47,eda61b0dbeef45eb9834eb99abf3de47,0.5925877364080224,0.006938692176961028,0.6054059130383656,0.005000349574576797,0.6035126188348693,0.004728260141029759,0.6119061094807641,0.004771612617469231,0.6098099529286345,0.005008956024137795,0.6159536245567923,0.004723028783171482,0.6148523779830684,0.004997228208295086,0.6189954489121384,0.0044948481276867736,0.6186538222172048,0.00502869795489423,0.621985204096152,0.004774954625505153,0.6205070300289018,0.005027883757751465,0.623291378755718,0.004327321562583568,0.6225849652375337,0.004950017601162595,0.6236365636313036,0.0036457795039575203,0.6237926423891605,0.004245521464206745,0.6243730233817768,0.003865562101022002,0.6248579763376663,0.0038746170724038623,0.6253689859651296,0.0038256712915678776,0.6255558975895085,0.0035003559632764006,0.6258166240756389,0.003538475265463362,0.6262833942208905,0.0037135461361424717,0.6262065568792188,0.0031894454050451007,0.6273253236863593,0.0036746830982040094,0.6262994361082519,0.0031116644905288416,0.6272132325373873,0.003878365784076129,0.6270689993444903,0.0026541991979802592,0.6272804667385671,0.003956873936047823,0.6267385396602559,0.0033012614217239537,0.6260879001068883,0.004465611244769408,0.6251413300708595,0.004225134164615164,0.6231868306489841,0.004918352621876367,0.6226329677824316,0.004361787090028386,0.6181800184153236,0.005610672783530799,0.6198470439074982,0.004954696486638424
0.0,0.4,0.0,0.0,0.0,0.0,0.0,output/RCC/RCC_3cb16686fdb05f9648dcaa197d86f0f0,3cb16686fdb05f9648dcaa197d86f0f0,0.5601903136059753,0.023301472469105338,0.60630128982075,0.009031391810457371,0.5912289155240547,0.014539978689266764,0.6139069958869086,0.007412225154103179,0.6061409085401712,0.010197508488928019,0.6199136991759568,0.00617441862334798,0.6156267286921651,0.007407582764683369,0.6243628507068224,0.005386048789697784,0.6219202696488167,0.006023807767133579,0.627993317123969,0.0052411106238195015,0.6266899309276874,0.005782292608949246,0.630758344911048,0.005729210044921515,0.6305298027610053,0.005410864829601481,0.6324871188409406,0.005496168089136652,0.6330042815082161,0.0052029806928775325,0.6341369596175255,0.00570288645199971,0.6348608849106937,0.005737383946614812,0.6367034444955584,0.005948269657512621,0.6356179869960433,0.006651082809640363,0.6379617970567887,0.007621735548929616,0.6373038606955547,0.007482286225428503,0.6373929214121763,0.0075943866595328735,0.6385214379726407,0.007749612447251744,0.6365836881269884,0.007878789646395677,0.6382087597934083,0.008520310354793682,0.6358668030692305,0.008794323282564099,0.6376700544380963,0.009983243894373599,0.633816384081711,0.010045663710479302,0.634780198042358,0.011735836783331111,0.6306598013516426,0.010603940283882294,0.6258786112291219,0.013735296612241604,0.6268541645544079,0.012710301203894917,0.5994669749520999,0.02756344651380324,0.6196971726993523,0.01571137750413604
0.0,0.0,0.0,0.0,0.4,0.7,1.7,output/RCC/RCC_2af7c45728a8dcfea2f07bb91ce0533b,2af7c45728a8dcfea2f07bb91ce0533b,0.5826360568020215,0.012595617839554981,0.6095929687568431,0.00834218256808553,0.6043880713093237,0.007326381632742741,0.6176269017704928,0.008486659766797773,0.61400139575416,0.00800810836848,0.6232134775311888,0.009164181248383762,0.6204205293978841,0.008675433370333751,0.6268417203203844,0.010032556399304038,0.6251738677814654,0.008872561703807246,0.628747052753139,0.009909835328050468,0.6283415714707669,0.00926429027561411,0.6313819249986645,0.010021579596668924,0.631351169197862,0.009685648338992684,0.6338471793551991,0.009601124092121308,0.6335322333762007,0.009581831429925558,0.6352763894357109,0.009438564262142768,0.6349968861690078,0.009329038783503881,0.636547057474824,0.008930826351155625,0.636303681113632,0.008863004156344424,0.6369896412019351,0.008005211678799438,0.6375303925581131,0.007993016721109783,0.6370158989962398,0.007518244427213655,0.6385391076383669,0.00715861807754437,0.6361470403399192,0.0073215616748080565,0.6385667855095245,0.007054660803734461,0.635115076787719,0.007369483134264981,0.6365988963888245,0.006531500574639648,0.6337739105322636,0.0070301009263275555,0.6333135697356228,0.006484143290302905,0.6308906432555296,0.007420907165245702,0.6264159397395697,0.009725330186215108,0.6276334719050154,0.008654142210449123,0.613726834091754,0.012521610960179504,0.6222409222503507,0.010379731718464326
0.0,0.0,0.0,0.2,0.0,0.0,0.0,output/RCC/RCC_6b738c9a057c7ccb33fe860a7e794248,6b738c9a057c7ccb33fe860a7e794248,0.5624199226087251,0.02252861628708266,0.6083682901556664,0.005250686725698862,0.596753971224713,0.00878611000090286,0.6164264189857152,0.003787465123051024,0.6114706712495581,0.005052459981180102,0.6217562587608215,0.003283601153607732,0.6200901035473801,0.0039598966713712954,0.6257062255530151,0.0040078324819995,0.6258738500713872,0.0037326679918915054,0.6290224687172388,0.003956192577819221,0.6289799613340611,0.00411760871352514,0.6308312706975496,0.0036189399515947464,0.6318803193438,0.004380888498951218,0.633570204220021,0.0031327108888365694,0.6343843349376913,0.0036621771393077784,0.6351876003287587,0.0028108068330170606,0.6353592153476719,0.0033552770975162007,0.636227058052253,0.002824122049359571,0.6366995883901133,0.003648339910669902,0.6371794747448682,0.0032754494031027666,0.6372310223128566,0.0028274285605381613,0.637397596105933,0.0034806252372786887,0.636989062269214,0.0021750612580496943,0.6367151913788046,0.0033192310294699744,0.6367300011544821,0.0028127376533105333,0.6357072225202722,0.0037938700805259557,0.6357854470448924,0.004282047942908247,0.6345909547100557,0.004725254834295211,0.6319657156794491,0.006100059991395216,0.632275490736644,0.005447795700497811,0.6244529348937902,0.011232212340717949,0.6280154255871647,0.007413008299835295,0.5965931237905145,0.027468497086935904,0.6221765000081014,0.009545952636684774
0.0,0.0,0.0,0.0,0.0,0.0,0.0,output/RCC/RCC_db8d1771763aa8f126498c42cce309d4,db8d1771763aa8f126498c42cce309d4,0.5,0.0,0.5537879661916825,0.04106878877189942,0.5,0.0,0.5649024105517932,0.041791185990728806,0.5085484519508209,0.019268680907889968,0.5749237895221674,0.041079596505959305,0.5444571477571263,0.03214712864976586,0.5840810042663207,0.0404532896781124,0.5825372218966038,0.03879166318018893,0.5923813374947319,0.03947597050677233,0.6042800251707917,0.03663602709429604,0.5988274074870211,0.038926313889480056,0.6145510341035356,0.03844421835363325,0.6046156266422282,0.038902330760594156,0.623562844631788,0.028778224857791922,0.6105838553408028,0.03973923478188655,0.6358534114907544,0.005153296519285778,0.6157933410181013,0.04047110994332178,0.6343149654521898,0.014769724043567372,0.6035978441222145,0.053715265280667605,0.6268140302314908,0.04274626943355991,0.5890295388391114,0.05815793952578842,0.6260446408630338,0.04255228259256497,0.5796769267830179,0.05400645707842501,0.6161408021518854,0.04061904693905959,0.5641904680381582,0.0507063068719739,0.5882684791471254,0.053732057055781074,0.5498795697762985,0.04484194765543798,0.5331233292480982,0.036693978952032934,0.5358991960466564,0.0404529132129205,0.5,0.0,0.5257042500390874,0.0361009375739564,0.5,0.0,0.5164261313990063,0.030936778498188232
0.4,0.0,0.0,0.0,0.0,0.0,0.0,output/RCC/RCC_c139bb7b61ed999cb7f2bfbaac9ab7e2,c139bb7b61ed999cb7f2bfbaac9ab7e2,0.5983782205435177,0.009884264679551405,0.6183956210431217,0.008550166839915607,0.6130223716520256,0.007342932744570507,0.6242103282499657,0.006872177501104398,0.6198750178237972,0.007230614285697732,0.6276664043424767,0.006420858225732456,0.6249625798941253,0.006685542446485032,0.6307023143737753,0.0057848050660980815,0.6289401634687966,0.0065633778887345924,0.6328332848947091,0.0057432831539235545,0.6315292614965042,0.005822015192498231,0.635060529295631,0.0054843609229875325,0.6333671811611684,0.005474931339230299,0.6364836154709319,0.005172056322599254,0.6351046917121231,0.005041857657333599,0.6371665991307813,0.004959844238128174,0.6367498070443556,0.004929208808637456,0.6375454175539093,0.004909028040595848,0.6379770100177541,0.004947809892656639,0.6382716566983099,0.005170085348550484,0.6387987833992019,0.004468683098999042,0.6381772822063562,0.004848158648201774,0.6389046970728899,0.004518472333979729,0.6380386259400279,0.004703188350964925,0.6392087391924257,0.004828924529631297,0.6380997146200023,0.0046603068067981104,0.6390258998334366,0.004616112524019607,0.6377271967893444,0.004623803691325905,0.6378830246137005,0.003989505785701553,0.6363657989029075,0.004277037516932451,0.6359403021494983,0.003887384997503192,0.6344168538517805,0.004360736148762412,0.6283114735480565,0.006784927171628257,0.631382177811817,0.006242860112616115
0.4,0.4,0.4,0.2,0.4,0.7,1.7,output/RCC/RCC_1153122048000b25de26fda369342ae0,1153122048000b25de26fda369342ae0,0.5132975686367033,0.016221988890468775,0.5814105323575836,0.016436566069371245,0.5503070364046805,0.02799579758367218,0.594308479526063,0.01395587863664963,0.5785190867163398,0.023253188960347296,0.6033877065817095,0.011756227977684285,0.5978159781897248,0.014112897743266326,0.6111292898491703,0.008758621576557284,0.6102343951974448,0.008414594723601775,0.616592223061424,0.0077033632311362095,0.6178160342033452,0.004731202904364016,0.6210472889163368,0.0065499035883224265,0.6237185784735597,0.0030994549398435742,0.624101159959374,0.005329038944462259,0.6271758782193217,0.004020251905364154,0.6272760223021425,0.005627471396119683,0.6304623242051057,0.004699604386425982,0.63014738668454,0.006310525897322494,0.632735057116788,0.005293424764128294,0.6323061563141653,0.00506133140573713,0.6334494046447622,0.0050696322887465416,0.6309316516164836,0.0064820507798342385,0.6324917907152199,0.0055211399319096055,0.6282236214474725,0.007604028164980533,0.6289383702810827,0.0073212656870781665,0.6243637858335389,0.010835436806515065,0.6226400991809493,0.011722212458924457,0.6190908628514775,0.014623854123354815,0.6099207038859504,0.020614209671051823,0.6144870676768216,0.01832210682604785,0.5824997247250099,0.03322203919549863,0.608232693022466,0.02210615709870419,0.5397607872552699,0.028741371303585152,0.5968847837045327,0.026674431554009028
1 loudness_ratio shift_ratio noise_ratio mask_ratio speed_amount speed_min speed_max exp_path exp_fingerprint mean_decb_0.1_mean mean_decb_0.1_std majority_decb_0.1_mean majority_decb_0.1_std mean_decb_0.15_mean mean_decb_0.15_std majority_decb_0.15_mean majority_decb_0.15_std mean_decb_0.2_mean mean_decb_0.2_std majority_decb_0.2_mean majority_decb_0.2_std mean_decb_0.25_mean mean_decb_0.25_std majority_decb_0.25_mean majority_decb_0.25_std mean_decb_0.3_mean mean_decb_0.3_std majority_decb_0.3_mean majority_decb_0.3_std mean_decb_0.35000000000000003_mean mean_decb_0.35000000000000003_std majority_decb_0.35000000000000003_mean majority_decb_0.35000000000000003_std mean_decb_0.4_mean mean_decb_0.4_std majority_decb_0.4_mean majority_decb_0.4_std mean_decb_0.45_mean mean_decb_0.45_std majority_decb_0.45_mean majority_decb_0.45_std mean_decb_0.5_mean mean_decb_0.5_std majority_decb_0.5_mean majority_decb_0.5_std mean_decb_0.55_mean mean_decb_0.55_std majority_decb_0.55_mean majority_decb_0.55_std mean_decb_0.6_mean mean_decb_0.6_std majority_decb_0.6_mean majority_decb_0.6_std mean_decb_0.65_mean mean_decb_0.65_std majority_decb_0.65_mean majority_decb_0.65_std mean_decb_0.7000000000000001_mean mean_decb_0.7000000000000001_std majority_decb_0.7000000000000001_mean majority_decb_0.7000000000000001_std mean_decb_0.75_mean mean_decb_0.75_std majority_decb_0.75_mean majority_decb_0.75_std mean_decb_0.8_mean mean_decb_0.8_std majority_decb_0.8_mean majority_decb_0.8_std mean_decb_0.85_mean mean_decb_0.85_std majority_decb_0.85_mean majority_decb_0.85_std mean_decb_0.9_mean mean_decb_0.9_std majority_decb_0.9_mean majority_decb_0.9_std
2 0.0 0.0 0.4 0.0 0.0 0.0 0.0 output/RCC/RCC_eda61b0dbeef45eb9834eb99abf3de47 eda61b0dbeef45eb9834eb99abf3de47 0.5925877364080224 0.006938692176961028 0.6054059130383656 0.005000349574576797 0.6035126188348693 0.004728260141029759 0.6119061094807641 0.004771612617469231 0.6098099529286345 0.005008956024137795 0.6159536245567923 0.004723028783171482 0.6148523779830684 0.004997228208295086 0.6189954489121384 0.0044948481276867736 0.6186538222172048 0.00502869795489423 0.621985204096152 0.004774954625505153 0.6205070300289018 0.005027883757751465 0.623291378755718 0.004327321562583568 0.6225849652375337 0.004950017601162595 0.6236365636313036 0.0036457795039575203 0.6237926423891605 0.004245521464206745 0.6243730233817768 0.003865562101022002 0.6248579763376663 0.0038746170724038623 0.6253689859651296 0.0038256712915678776 0.6255558975895085 0.0035003559632764006 0.6258166240756389 0.003538475265463362 0.6262833942208905 0.0037135461361424717 0.6262065568792188 0.0031894454050451007 0.6273253236863593 0.0036746830982040094 0.6262994361082519 0.0031116644905288416 0.6272132325373873 0.003878365784076129 0.6270689993444903 0.0026541991979802592 0.6272804667385671 0.003956873936047823 0.6267385396602559 0.0033012614217239537 0.6260879001068883 0.004465611244769408 0.6251413300708595 0.004225134164615164 0.6231868306489841 0.004918352621876367 0.6226329677824316 0.004361787090028386 0.6181800184153236 0.005610672783530799 0.6198470439074982 0.004954696486638424
3 0.0 0.4 0.0 0.0 0.0 0.0 0.0 output/RCC/RCC_3cb16686fdb05f9648dcaa197d86f0f0 3cb16686fdb05f9648dcaa197d86f0f0 0.5601903136059753 0.023301472469105338 0.60630128982075 0.009031391810457371 0.5912289155240547 0.014539978689266764 0.6139069958869086 0.007412225154103179 0.6061409085401712 0.010197508488928019 0.6199136991759568 0.00617441862334798 0.6156267286921651 0.007407582764683369 0.6243628507068224 0.005386048789697784 0.6219202696488167 0.006023807767133579 0.627993317123969 0.0052411106238195015 0.6266899309276874 0.005782292608949246 0.630758344911048 0.005729210044921515 0.6305298027610053 0.005410864829601481 0.6324871188409406 0.005496168089136652 0.6330042815082161 0.0052029806928775325 0.6341369596175255 0.00570288645199971 0.6348608849106937 0.005737383946614812 0.6367034444955584 0.005948269657512621 0.6356179869960433 0.006651082809640363 0.6379617970567887 0.007621735548929616 0.6373038606955547 0.007482286225428503 0.6373929214121763 0.0075943866595328735 0.6385214379726407 0.007749612447251744 0.6365836881269884 0.007878789646395677 0.6382087597934083 0.008520310354793682 0.6358668030692305 0.008794323282564099 0.6376700544380963 0.009983243894373599 0.633816384081711 0.010045663710479302 0.634780198042358 0.011735836783331111 0.6306598013516426 0.010603940283882294 0.6258786112291219 0.013735296612241604 0.6268541645544079 0.012710301203894917 0.5994669749520999 0.02756344651380324 0.6196971726993523 0.01571137750413604
4 0.0 0.0 0.0 0.0 0.4 0.7 1.7 output/RCC/RCC_2af7c45728a8dcfea2f07bb91ce0533b 2af7c45728a8dcfea2f07bb91ce0533b 0.5826360568020215 0.012595617839554981 0.6095929687568431 0.00834218256808553 0.6043880713093237 0.007326381632742741 0.6176269017704928 0.008486659766797773 0.61400139575416 0.00800810836848 0.6232134775311888 0.009164181248383762 0.6204205293978841 0.008675433370333751 0.6268417203203844 0.010032556399304038 0.6251738677814654 0.008872561703807246 0.628747052753139 0.009909835328050468 0.6283415714707669 0.00926429027561411 0.6313819249986645 0.010021579596668924 0.631351169197862 0.009685648338992684 0.6338471793551991 0.009601124092121308 0.6335322333762007 0.009581831429925558 0.6352763894357109 0.009438564262142768 0.6349968861690078 0.009329038783503881 0.636547057474824 0.008930826351155625 0.636303681113632 0.008863004156344424 0.6369896412019351 0.008005211678799438 0.6375303925581131 0.007993016721109783 0.6370158989962398 0.007518244427213655 0.6385391076383669 0.00715861807754437 0.6361470403399192 0.0073215616748080565 0.6385667855095245 0.007054660803734461 0.635115076787719 0.007369483134264981 0.6365988963888245 0.006531500574639648 0.6337739105322636 0.0070301009263275555 0.6333135697356228 0.006484143290302905 0.6308906432555296 0.007420907165245702 0.6264159397395697 0.009725330186215108 0.6276334719050154 0.008654142210449123 0.613726834091754 0.012521610960179504 0.6222409222503507 0.010379731718464326
5 0.0 0.0 0.0 0.2 0.0 0.0 0.0 output/RCC/RCC_6b738c9a057c7ccb33fe860a7e794248 6b738c9a057c7ccb33fe860a7e794248 0.5624199226087251 0.02252861628708266 0.6083682901556664 0.005250686725698862 0.596753971224713 0.00878611000090286 0.6164264189857152 0.003787465123051024 0.6114706712495581 0.005052459981180102 0.6217562587608215 0.003283601153607732 0.6200901035473801 0.0039598966713712954 0.6257062255530151 0.0040078324819995 0.6258738500713872 0.0037326679918915054 0.6290224687172388 0.003956192577819221 0.6289799613340611 0.00411760871352514 0.6308312706975496 0.0036189399515947464 0.6318803193438 0.004380888498951218 0.633570204220021 0.0031327108888365694 0.6343843349376913 0.0036621771393077784 0.6351876003287587 0.0028108068330170606 0.6353592153476719 0.0033552770975162007 0.636227058052253 0.002824122049359571 0.6366995883901133 0.003648339910669902 0.6371794747448682 0.0032754494031027666 0.6372310223128566 0.0028274285605381613 0.637397596105933 0.0034806252372786887 0.636989062269214 0.0021750612580496943 0.6367151913788046 0.0033192310294699744 0.6367300011544821 0.0028127376533105333 0.6357072225202722 0.0037938700805259557 0.6357854470448924 0.004282047942908247 0.6345909547100557 0.004725254834295211 0.6319657156794491 0.006100059991395216 0.632275490736644 0.005447795700497811 0.6244529348937902 0.011232212340717949 0.6280154255871647 0.007413008299835295 0.5965931237905145 0.027468497086935904 0.6221765000081014 0.009545952636684774
6 0.0 0.0 0.0 0.0 0.0 0.0 0.0 output/RCC/RCC_db8d1771763aa8f126498c42cce309d4 db8d1771763aa8f126498c42cce309d4 0.5 0.0 0.5537879661916825 0.04106878877189942 0.5 0.0 0.5649024105517932 0.041791185990728806 0.5085484519508209 0.019268680907889968 0.5749237895221674 0.041079596505959305 0.5444571477571263 0.03214712864976586 0.5840810042663207 0.0404532896781124 0.5825372218966038 0.03879166318018893 0.5923813374947319 0.03947597050677233 0.6042800251707917 0.03663602709429604 0.5988274074870211 0.038926313889480056 0.6145510341035356 0.03844421835363325 0.6046156266422282 0.038902330760594156 0.623562844631788 0.028778224857791922 0.6105838553408028 0.03973923478188655 0.6358534114907544 0.005153296519285778 0.6157933410181013 0.04047110994332178 0.6343149654521898 0.014769724043567372 0.6035978441222145 0.053715265280667605 0.6268140302314908 0.04274626943355991 0.5890295388391114 0.05815793952578842 0.6260446408630338 0.04255228259256497 0.5796769267830179 0.05400645707842501 0.6161408021518854 0.04061904693905959 0.5641904680381582 0.0507063068719739 0.5882684791471254 0.053732057055781074 0.5498795697762985 0.04484194765543798 0.5331233292480982 0.036693978952032934 0.5358991960466564 0.0404529132129205 0.5 0.0 0.5257042500390874 0.0361009375739564 0.5 0.0 0.5164261313990063 0.030936778498188232
7 0.4 0.0 0.0 0.0 0.0 0.0 0.0 output/RCC/RCC_c139bb7b61ed999cb7f2bfbaac9ab7e2 c139bb7b61ed999cb7f2bfbaac9ab7e2 0.5983782205435177 0.009884264679551405 0.6183956210431217 0.008550166839915607 0.6130223716520256 0.007342932744570507 0.6242103282499657 0.006872177501104398 0.6198750178237972 0.007230614285697732 0.6276664043424767 0.006420858225732456 0.6249625798941253 0.006685542446485032 0.6307023143737753 0.0057848050660980815 0.6289401634687966 0.0065633778887345924 0.6328332848947091 0.0057432831539235545 0.6315292614965042 0.005822015192498231 0.635060529295631 0.0054843609229875325 0.6333671811611684 0.005474931339230299 0.6364836154709319 0.005172056322599254 0.6351046917121231 0.005041857657333599 0.6371665991307813 0.004959844238128174 0.6367498070443556 0.004929208808637456 0.6375454175539093 0.004909028040595848 0.6379770100177541 0.004947809892656639 0.6382716566983099 0.005170085348550484 0.6387987833992019 0.004468683098999042 0.6381772822063562 0.004848158648201774 0.6389046970728899 0.004518472333979729 0.6380386259400279 0.004703188350964925 0.6392087391924257 0.004828924529631297 0.6380997146200023 0.0046603068067981104 0.6390258998334366 0.004616112524019607 0.6377271967893444 0.004623803691325905 0.6378830246137005 0.003989505785701553 0.6363657989029075 0.004277037516932451 0.6359403021494983 0.003887384997503192 0.6344168538517805 0.004360736148762412 0.6283114735480565 0.006784927171628257 0.631382177811817 0.006242860112616115
8 0.4 0.4 0.4 0.2 0.4 0.7 1.7 output/RCC/RCC_1153122048000b25de26fda369342ae0 1153122048000b25de26fda369342ae0 0.5132975686367033 0.016221988890468775 0.5814105323575836 0.016436566069371245 0.5503070364046805 0.02799579758367218 0.594308479526063 0.01395587863664963 0.5785190867163398 0.023253188960347296 0.6033877065817095 0.011756227977684285 0.5978159781897248 0.014112897743266326 0.6111292898491703 0.008758621576557284 0.6102343951974448 0.008414594723601775 0.616592223061424 0.0077033632311362095 0.6178160342033452 0.004731202904364016 0.6210472889163368 0.0065499035883224265 0.6237185784735597 0.0030994549398435742 0.624101159959374 0.005329038944462259 0.6271758782193217 0.004020251905364154 0.6272760223021425 0.005627471396119683 0.6304623242051057 0.004699604386425982 0.63014738668454 0.006310525897322494 0.632735057116788 0.005293424764128294 0.6323061563141653 0.00506133140573713 0.6334494046447622 0.0050696322887465416 0.6309316516164836 0.0064820507798342385 0.6324917907152199 0.0055211399319096055 0.6282236214474725 0.007604028164980533 0.6289383702810827 0.0073212656870781665 0.6243637858335389 0.010835436806515065 0.6226400991809493 0.011722212458924457 0.6190908628514775 0.014623854123354815 0.6099207038859504 0.020614209671051823 0.6144870676768216 0.01832210682604785 0.5824997247250099 0.03322203919549863 0.608232693022466 0.02210615709870419 0.5397607872552699 0.028741371303585152 0.5968847837045327 0.026674431554009028

BIN
output/raw.png Normal file

Binary file not shown.

After

Width:  |  Height:  |  Size: 18 KiB

BIN
output/rcc.pdf Normal file

Binary file not shown.

8
output/results.csv Normal file
View File

@ -0,0 +1,8 @@
loudness_ratio,shift_ratio,noise_ratio,mask_ratio,speed_amount,speed_min,speed_max,exp_path,exp_fingerprint,mean_decb_0.1_mean,mean_decb_0.1_std,majority_decb_0.1_mean,majority_decb_0.1_std,mean_decb_0.15_mean,mean_decb_0.15_std,majority_decb_0.15_mean,majority_decb_0.15_std,mean_decb_0.2_mean,mean_decb_0.2_std,majority_decb_0.2_mean,majority_decb_0.2_std,mean_decb_0.25_mean,mean_decb_0.25_std,majority_decb_0.25_mean,majority_decb_0.25_std,mean_decb_0.3_mean,mean_decb_0.3_std,majority_decb_0.3_mean,majority_decb_0.3_std,mean_decb_0.35000000000000003_mean,mean_decb_0.35000000000000003_std,majority_decb_0.35000000000000003_mean,majority_decb_0.35000000000000003_std,mean_decb_0.4_mean,mean_decb_0.4_std,majority_decb_0.4_mean,majority_decb_0.4_std,mean_decb_0.45_mean,mean_decb_0.45_std,majority_decb_0.45_mean,majority_decb_0.45_std,mean_decb_0.5_mean,mean_decb_0.5_std,majority_decb_0.5_mean,majority_decb_0.5_std,mean_decb_0.55_mean,mean_decb_0.55_std,majority_decb_0.55_mean,majority_decb_0.55_std,mean_decb_0.6_mean,mean_decb_0.6_std,majority_decb_0.6_mean,majority_decb_0.6_std,mean_decb_0.65_mean,mean_decb_0.65_std,majority_decb_0.65_mean,majority_decb_0.65_std,mean_decb_0.7000000000000001_mean,mean_decb_0.7000000000000001_std,majority_decb_0.7000000000000001_mean,majority_decb_0.7000000000000001_std,mean_decb_0.75_mean,mean_decb_0.75_std,majority_decb_0.75_mean,majority_decb_0.75_std,mean_decb_0.8_mean,mean_decb_0.8_std,majority_decb_0.8_mean,majority_decb_0.8_std,mean_decb_0.85_mean,mean_decb_0.85_std,majority_decb_0.85_mean,majority_decb_0.85_std,mean_decb_0.9_mean,mean_decb_0.9_std,majority_decb_0.9_mean,majority_decb_0.9_std
0.0,0.0,0.0,0.0,0.0,0.0,0.0,output/BCC/BCC_db8d1771763aa8f126498c42cce309d4,db8d1771763aa8f126498c42cce309d4,0.49998747024182427,2.5059516351344513e-05,0.5311949955175945,0.015112175122027827,0.5071166723864466,0.003570711297014624,0.5492620919778984,0.01851216603386002,0.5293378714515982,0.009879962150055866,0.5638004619281626,0.01942253972659972,0.553531742411179,0.014899927077776539,0.5757971809585419,0.018554233762557208,0.5754232082774748,0.0158392615728627,0.5874900683903749,0.016891075996529916,0.5949602384120131,0.01533473801319841,0.5982690917256116,0.015698837581181586,0.6115475837772977,0.013087107406046813,0.6088634872132747,0.013455978264132511,0.6254632852710154,0.010653191920014791,0.6192807856778662,0.01089874115168,0.6372496506009454,0.008131179811915431,0.6313621567018248,0.010903739879631091,0.646534199529463,0.006163372309844989,0.6430586211108267,0.008147159053007483,0.6524925252831009,0.005238623995814059,0.6476689678114534,0.00765243991104426,0.6545960773248105,0.006199612336030588,0.647929208407622,0.008051866737801753,0.6536517638106375,0.007702468341359227,0.6460285619465342,0.008419549087757138,0.6465563615627319,0.009655918108778926,0.639586622488837,0.009224189389706849,0.6279623883952109,0.012026165828036067,0.6243279671909054,0.011623022983736532,0.584630905766933,0.0165077441526688,0.6003664756902956,0.013317932476419391,0.5150911783322174,0.011563903991300705,0.5643390873982775,0.015885951694295016
0.0,0.0,0.4,0.0,0.0,0.0,0.0,output/BCC/BCC_eda61b0dbeef45eb9834eb99abf3de47,eda61b0dbeef45eb9834eb99abf3de47,0.5822832349016133,0.014277229463365937,0.614223574343401,0.007123043977676212,0.6019933386647773,0.01087559261092599,0.6207661108799766,0.006582369701223912,0.6136665724585239,0.008045625076395373,0.6255756019781905,0.005612628017794035,0.6210624755621785,0.006706298557609762,0.6295592493092187,0.0049612343822471785,0.6264034381761694,0.005703521664488483,0.6326191155013259,0.004889324894579935,0.6307692262146901,0.005080289638922534,0.6357464499112485,0.004557767212874401,0.6346350682556039,0.004524266148547106,0.638249092419579,0.004679185634818143,0.637112206709958,0.0039821643350878705,0.6399670085414757,0.004817516942879441,0.6398018379083867,0.004480682403048495,0.6414604538388935,0.005114714037223655,0.6419113540849135,0.004404764498926187,0.6430059767660765,0.005530397909719675,0.643286044868113,0.004808962693447943,0.6441961891340118,0.00528612884781965,0.6447250864667973,0.005041608762556574,0.6446017991725247,0.005366178133230501,0.64539916715641,0.004539668430481869,0.6447992142905556,0.004774407361312133,0.645656430384299,0.004498939376424698,0.6450833884917122,0.004451675740868208,0.6443659949881717,0.00374981901241002,0.643589012766707,0.004048860065531186,0.6406433072200841,0.004001505707370434,0.6416505364356759,0.0038211772856512295,0.6316921145190574,0.0066680056949816775,0.6369806414296361,0.0038874311762615438
0.4,0.0,0.0,0.0,0.0,0.0,0.0,output/BCC/BCC_c139bb7b61ed999cb7f2bfbaac9ab7e2,c139bb7b61ed999cb7f2bfbaac9ab7e2,0.5953526034848817,0.009994961530947009,0.6213078650303321,0.00591329204483482,0.6105428037478601,0.00826912741156256,0.6291588675218857,0.005729586082042761,0.6209517246048625,0.0069540219030815925,0.6340199785546778,0.005783324183232921,0.6282333928167908,0.006316000816135033,0.6384810010258011,0.0055530736750792715,0.6341372321670208,0.005565533421336869,0.6422332923682044,0.005370511654233748,0.6387102442859247,0.0057379267615629,0.6451112759440335,0.004926673673350581,0.6428876367150561,0.005291873545943229,0.6471772584475588,0.004731957811971279,0.6463076244349156,0.004599532710726014,0.6492062503456208,0.004344008756507752,0.6494991771448789,0.004511703754646507,0.6508922518614473,0.0043329070030276445,0.6519152532343824,0.004496989231629901,0.6525704960547427,0.004161995712489743,0.6534563758969557,0.003935674790074506,0.6539281196005831,0.004000697056933606,0.6553677166363423,0.004262669730173998,0.6549192242241391,0.003914594026828055,0.6572893635059535,0.00409932082129434,0.6558723504852677,0.0038505469952177023,0.6586411075013027,0.00377301934528889,0.6567613655865022,0.003719584656560209,0.6584077816377052,0.003415705707993253,0.6569675859328822,0.004009033739026109,0.6559369277987817,0.004188169286718383,0.6565178971223773,0.004311121199108305,0.6484983547220778,0.006610219271521315,0.654074583000212,0.004369127397296004
0.0,0.4,0.0,0.0,0.0,0.0,0.0,output/BCC/BCC_3cb16686fdb05f9648dcaa197d86f0f0,3cb16686fdb05f9648dcaa197d86f0f0,0.5690024628324254,0.010927333003299877,0.6287383189515544,0.011210983071878919,0.604468122855388,0.009148452718499626,0.6441459554425559,0.008713713824424095,0.627987303178382,0.008082376594374073,0.6546106530838525,0.007586574662152933,0.6447440098602017,0.006608820210232434,0.6621088082996998,0.005996089788957881,0.6567322920739638,0.006363534995890463,0.6675398654387429,0.004987676358600798,0.665151577180021,0.005230404192603345,0.6719235458817151,0.004324195591334658,0.6712674478198353,0.0034716996960555213,0.6745632977030318,0.004088170605283382,0.6762623797149794,0.003367696424914243,0.6757873193659425,0.005054862755228786,0.6793676742689932,0.003673956074037863,0.676116442617824,0.006037872342597853,0.679912942428186,0.004407342862349408,0.6755556109426253,0.00614135931317807,0.6796134697419122,0.005705103065690281,0.673469599810501,0.007519687092551546,0.6773784915141057,0.007545441632784105,0.6701527260231349,0.00850397549736509,0.6732220214879525,0.009277755800843165,0.6652025063426026,0.009688479374158034,0.6651722477096726,0.011229497924456265,0.6584605613173771,0.01011780551000107,0.6544883084349031,0.011918426401518013,0.6470116865088338,0.010894085280778626,0.6357881208494237,0.012967137635907363,0.6314928855371441,0.01122065967116801,0.606838112704893,0.011140499621092707,0.6099331847731823,0.011661629429919473
0.0,0.0,0.0,0.0,0.4,0.7,1.7,output/BCC/BCC_2af7c45728a8dcfea2f07bb91ce0533b,2af7c45728a8dcfea2f07bb91ce0533b,0.5936077293984254,0.00868807871395221,0.6269160567854806,0.011130936303142557,0.6158427890151501,0.007983391241809284,0.635995843977331,0.009098095730947305,0.6292450439129869,0.007659533059946964,0.6431906976564089,0.006793202363809304,0.6383004943145612,0.00621909168042349,0.6480246965932027,0.0057221895464368636,0.6448467384640982,0.00557737758267446,0.6515003370403447,0.004127659321033492,0.6501624404390068,0.004591849315864673,0.6546795310404364,0.003719573480123698,0.6537520291309924,0.0039007373669972803,0.6572714513651591,0.0034780252029153733,0.6577350693345239,0.0032173447139593934,0.6593395935884779,0.003312215922221381,0.6602243484591537,0.003125371825693809,0.6617596338633989,0.003120773801126948,0.6618745228739138,0.0030169744092991098,0.6629351868277918,0.0032040814077269734,0.6639818154224895,0.002777445398186179,0.6637310069185093,0.003025302773704986,0.6651338614628284,0.0026472363538318625,0.6639097984475806,0.003201896586323688,0.6657409400882451,0.002789570677155023,0.6635400474642126,0.003334167029839661,0.6647573296359833,0.003227312693467614,0.6629372046338828,0.003994880893117735,0.6617911866365186,0.0047128503364520504,0.6606628279667962,0.00488589728178858,0.6547629903950175,0.007557916066729358,0.6572753770177169,0.0067842262936338256,0.6383329089079812,0.012128510426312387,0.650401946597366,0.009125878443279034
0.4,0.4,0.4,0.2,0.4,0.7,1.7,output/BCC/BCC_1153122048000b25de26fda369342ae0,1153122048000b25de26fda369342ae0,0.5225303077858218,0.007568159447105149,0.5865186014278662,0.0184120161380992,0.562724566216802,0.012901497073023667,0.6073839701348909,0.01648127704025501,0.5941562127018365,0.014926857289822336,0.6218910034719799,0.013627611288937172,0.6148360428700432,0.012863575358821473,0.6316475047454626,0.011613506431628635,0.6304329687448134,0.010688307414604904,0.6395360711362453,0.009944167710997405,0.6417317937783003,0.008282618266259057,0.6464192719860885,0.008427952061924406,0.6507958614430545,0.0062516193420844475,0.650998707814648,0.005352543253607115,0.6564640864537524,0.00444612155082319,0.6537926145703156,0.003353268510819472,0.6578958631986491,0.003898418377417333,0.6538147249131628,0.0031009441978869035,0.6583235102735934,0.004066073278074313,0.6526691815278508,0.004476863187575506,0.6562920062210456,0.00647013527289821,0.6510962579781345,0.006263074435767392,0.6526498295738608,0.008036407827669992,0.6471688817797956,0.007860935743611026,0.6453475951529498,0.009550717987239828,0.6401940761047663,0.011552699537804668,0.6353232303558636,0.010542149569327735,0.630032102007344,0.013185635642050351,0.6201749857982917,0.011957620145608005,0.614819189912977,0.01313708163536355,0.5979462051580425,0.011662348183286715,0.5977080495294236,0.01193889674066375,0.563311664144738,0.008927272448876294,0.5765971409821097,0.010734152991207994
0.0,0.0,0.0,0.2,0.0,0.0,0.0,output/BCC/BCC_6b738c9a057c7ccb33fe860a7e794248,6b738c9a057c7ccb33fe860a7e794248,0.5766728918851037,0.012111414191176301,0.619254110600886,0.007654705960053367,0.6020821418691173,0.011080340865239754,0.6267523513408852,0.006327976103732864,0.6163851455938728,0.008784340490742249,0.6318152044499025,0.005101135945543378,0.6258596032513913,0.00671138459718275,0.6361671582519737,0.004128458886835169,0.6326851542440298,0.005253900331735938,0.6389294191917625,0.004134210503546723,0.6377766335084831,0.003699374340120643,0.6422689897733038,0.003959943184768117,0.6414004844915014,0.0028319819209817825,0.6448580577265846,0.0037535263170551205,0.6443489728624534,0.0030926918528754546,0.646690443696669,0.0037049438148316336,0.6460562153822198,0.0029605032692547194,0.6475817378755793,0.0038049288869173433,0.6478194141930168,0.00367707954524727,0.6483851526989561,0.0037019209751211857,0.6489051122879486,0.0036247132467559185,0.6495948824302301,0.003865228231370226,0.649887835544612,0.00413608853741559,0.6504804549493917,0.0039531019557641316,0.6512579935477572,0.0037483827055999333,0.6501346131355399,0.003427444327419835,0.650459772202004,0.002921437670037661,0.6492172134141118,0.0023493161281014445,0.6484262409451069,0.0024546228019007646,0.6472426101775696,0.002936534871812297,0.6421825060591513,0.0043530779605389985,0.6438633357133483,0.0036908043943732283,0.6270617974590342,0.009282636418283205,0.637010962091072,0.006823800072291407
1 loudness_ratio shift_ratio noise_ratio mask_ratio speed_amount speed_min speed_max exp_path exp_fingerprint mean_decb_0.1_mean mean_decb_0.1_std majority_decb_0.1_mean majority_decb_0.1_std mean_decb_0.15_mean mean_decb_0.15_std majority_decb_0.15_mean majority_decb_0.15_std mean_decb_0.2_mean mean_decb_0.2_std majority_decb_0.2_mean majority_decb_0.2_std mean_decb_0.25_mean mean_decb_0.25_std majority_decb_0.25_mean majority_decb_0.25_std mean_decb_0.3_mean mean_decb_0.3_std majority_decb_0.3_mean majority_decb_0.3_std mean_decb_0.35000000000000003_mean mean_decb_0.35000000000000003_std majority_decb_0.35000000000000003_mean majority_decb_0.35000000000000003_std mean_decb_0.4_mean mean_decb_0.4_std majority_decb_0.4_mean majority_decb_0.4_std mean_decb_0.45_mean mean_decb_0.45_std majority_decb_0.45_mean majority_decb_0.45_std mean_decb_0.5_mean mean_decb_0.5_std majority_decb_0.5_mean majority_decb_0.5_std mean_decb_0.55_mean mean_decb_0.55_std majority_decb_0.55_mean majority_decb_0.55_std mean_decb_0.6_mean mean_decb_0.6_std majority_decb_0.6_mean majority_decb_0.6_std mean_decb_0.65_mean mean_decb_0.65_std majority_decb_0.65_mean majority_decb_0.65_std mean_decb_0.7000000000000001_mean mean_decb_0.7000000000000001_std majority_decb_0.7000000000000001_mean majority_decb_0.7000000000000001_std mean_decb_0.75_mean mean_decb_0.75_std majority_decb_0.75_mean majority_decb_0.75_std mean_decb_0.8_mean mean_decb_0.8_std majority_decb_0.8_mean majority_decb_0.8_std mean_decb_0.85_mean mean_decb_0.85_std majority_decb_0.85_mean majority_decb_0.85_std mean_decb_0.9_mean mean_decb_0.9_std majority_decb_0.9_mean majority_decb_0.9_std
2 0.0 0.0 0.0 0.0 0.0 0.0 0.0 output/BCC/BCC_db8d1771763aa8f126498c42cce309d4 db8d1771763aa8f126498c42cce309d4 0.49998747024182427 2.5059516351344513e-05 0.5311949955175945 0.015112175122027827 0.5071166723864466 0.003570711297014624 0.5492620919778984 0.01851216603386002 0.5293378714515982 0.009879962150055866 0.5638004619281626 0.01942253972659972 0.553531742411179 0.014899927077776539 0.5757971809585419 0.018554233762557208 0.5754232082774748 0.0158392615728627 0.5874900683903749 0.016891075996529916 0.5949602384120131 0.01533473801319841 0.5982690917256116 0.015698837581181586 0.6115475837772977 0.013087107406046813 0.6088634872132747 0.013455978264132511 0.6254632852710154 0.010653191920014791 0.6192807856778662 0.01089874115168 0.6372496506009454 0.008131179811915431 0.6313621567018248 0.010903739879631091 0.646534199529463 0.006163372309844989 0.6430586211108267 0.008147159053007483 0.6524925252831009 0.005238623995814059 0.6476689678114534 0.00765243991104426 0.6545960773248105 0.006199612336030588 0.647929208407622 0.008051866737801753 0.6536517638106375 0.007702468341359227 0.6460285619465342 0.008419549087757138 0.6465563615627319 0.009655918108778926 0.639586622488837 0.009224189389706849 0.6279623883952109 0.012026165828036067 0.6243279671909054 0.011623022983736532 0.584630905766933 0.0165077441526688 0.6003664756902956 0.013317932476419391 0.5150911783322174 0.011563903991300705 0.5643390873982775 0.015885951694295016
3 0.0 0.0 0.4 0.0 0.0 0.0 0.0 output/BCC/BCC_eda61b0dbeef45eb9834eb99abf3de47 eda61b0dbeef45eb9834eb99abf3de47 0.5822832349016133 0.014277229463365937 0.614223574343401 0.007123043977676212 0.6019933386647773 0.01087559261092599 0.6207661108799766 0.006582369701223912 0.6136665724585239 0.008045625076395373 0.6255756019781905 0.005612628017794035 0.6210624755621785 0.006706298557609762 0.6295592493092187 0.0049612343822471785 0.6264034381761694 0.005703521664488483 0.6326191155013259 0.004889324894579935 0.6307692262146901 0.005080289638922534 0.6357464499112485 0.004557767212874401 0.6346350682556039 0.004524266148547106 0.638249092419579 0.004679185634818143 0.637112206709958 0.0039821643350878705 0.6399670085414757 0.004817516942879441 0.6398018379083867 0.004480682403048495 0.6414604538388935 0.005114714037223655 0.6419113540849135 0.004404764498926187 0.6430059767660765 0.005530397909719675 0.643286044868113 0.004808962693447943 0.6441961891340118 0.00528612884781965 0.6447250864667973 0.005041608762556574 0.6446017991725247 0.005366178133230501 0.64539916715641 0.004539668430481869 0.6447992142905556 0.004774407361312133 0.645656430384299 0.004498939376424698 0.6450833884917122 0.004451675740868208 0.6443659949881717 0.00374981901241002 0.643589012766707 0.004048860065531186 0.6406433072200841 0.004001505707370434 0.6416505364356759 0.0038211772856512295 0.6316921145190574 0.0066680056949816775 0.6369806414296361 0.0038874311762615438
4 0.4 0.0 0.0 0.0 0.0 0.0 0.0 output/BCC/BCC_c139bb7b61ed999cb7f2bfbaac9ab7e2 c139bb7b61ed999cb7f2bfbaac9ab7e2 0.5953526034848817 0.009994961530947009 0.6213078650303321 0.00591329204483482 0.6105428037478601 0.00826912741156256 0.6291588675218857 0.005729586082042761 0.6209517246048625 0.0069540219030815925 0.6340199785546778 0.005783324183232921 0.6282333928167908 0.006316000816135033 0.6384810010258011 0.0055530736750792715 0.6341372321670208 0.005565533421336869 0.6422332923682044 0.005370511654233748 0.6387102442859247 0.0057379267615629 0.6451112759440335 0.004926673673350581 0.6428876367150561 0.005291873545943229 0.6471772584475588 0.004731957811971279 0.6463076244349156 0.004599532710726014 0.6492062503456208 0.004344008756507752 0.6494991771448789 0.004511703754646507 0.6508922518614473 0.0043329070030276445 0.6519152532343824 0.004496989231629901 0.6525704960547427 0.004161995712489743 0.6534563758969557 0.003935674790074506 0.6539281196005831 0.004000697056933606 0.6553677166363423 0.004262669730173998 0.6549192242241391 0.003914594026828055 0.6572893635059535 0.00409932082129434 0.6558723504852677 0.0038505469952177023 0.6586411075013027 0.00377301934528889 0.6567613655865022 0.003719584656560209 0.6584077816377052 0.003415705707993253 0.6569675859328822 0.004009033739026109 0.6559369277987817 0.004188169286718383 0.6565178971223773 0.004311121199108305 0.6484983547220778 0.006610219271521315 0.654074583000212 0.004369127397296004
5 0.0 0.4 0.0 0.0 0.0 0.0 0.0 output/BCC/BCC_3cb16686fdb05f9648dcaa197d86f0f0 3cb16686fdb05f9648dcaa197d86f0f0 0.5690024628324254 0.010927333003299877 0.6287383189515544 0.011210983071878919 0.604468122855388 0.009148452718499626 0.6441459554425559 0.008713713824424095 0.627987303178382 0.008082376594374073 0.6546106530838525 0.007586574662152933 0.6447440098602017 0.006608820210232434 0.6621088082996998 0.005996089788957881 0.6567322920739638 0.006363534995890463 0.6675398654387429 0.004987676358600798 0.665151577180021 0.005230404192603345 0.6719235458817151 0.004324195591334658 0.6712674478198353 0.0034716996960555213 0.6745632977030318 0.004088170605283382 0.6762623797149794 0.003367696424914243 0.6757873193659425 0.005054862755228786 0.6793676742689932 0.003673956074037863 0.676116442617824 0.006037872342597853 0.679912942428186 0.004407342862349408 0.6755556109426253 0.00614135931317807 0.6796134697419122 0.005705103065690281 0.673469599810501 0.007519687092551546 0.6773784915141057 0.007545441632784105 0.6701527260231349 0.00850397549736509 0.6732220214879525 0.009277755800843165 0.6652025063426026 0.009688479374158034 0.6651722477096726 0.011229497924456265 0.6584605613173771 0.01011780551000107 0.6544883084349031 0.011918426401518013 0.6470116865088338 0.010894085280778626 0.6357881208494237 0.012967137635907363 0.6314928855371441 0.01122065967116801 0.606838112704893 0.011140499621092707 0.6099331847731823 0.011661629429919473
6 0.0 0.0 0.0 0.0 0.4 0.7 1.7 output/BCC/BCC_2af7c45728a8dcfea2f07bb91ce0533b 2af7c45728a8dcfea2f07bb91ce0533b 0.5936077293984254 0.00868807871395221 0.6269160567854806 0.011130936303142557 0.6158427890151501 0.007983391241809284 0.635995843977331 0.009098095730947305 0.6292450439129869 0.007659533059946964 0.6431906976564089 0.006793202363809304 0.6383004943145612 0.00621909168042349 0.6480246965932027 0.0057221895464368636 0.6448467384640982 0.00557737758267446 0.6515003370403447 0.004127659321033492 0.6501624404390068 0.004591849315864673 0.6546795310404364 0.003719573480123698 0.6537520291309924 0.0039007373669972803 0.6572714513651591 0.0034780252029153733 0.6577350693345239 0.0032173447139593934 0.6593395935884779 0.003312215922221381 0.6602243484591537 0.003125371825693809 0.6617596338633989 0.003120773801126948 0.6618745228739138 0.0030169744092991098 0.6629351868277918 0.0032040814077269734 0.6639818154224895 0.002777445398186179 0.6637310069185093 0.003025302773704986 0.6651338614628284 0.0026472363538318625 0.6639097984475806 0.003201896586323688 0.6657409400882451 0.002789570677155023 0.6635400474642126 0.003334167029839661 0.6647573296359833 0.003227312693467614 0.6629372046338828 0.003994880893117735 0.6617911866365186 0.0047128503364520504 0.6606628279667962 0.00488589728178858 0.6547629903950175 0.007557916066729358 0.6572753770177169 0.0067842262936338256 0.6383329089079812 0.012128510426312387 0.650401946597366 0.009125878443279034
7 0.4 0.4 0.4 0.2 0.4 0.7 1.7 output/BCC/BCC_1153122048000b25de26fda369342ae0 1153122048000b25de26fda369342ae0 0.5225303077858218 0.007568159447105149 0.5865186014278662 0.0184120161380992 0.562724566216802 0.012901497073023667 0.6073839701348909 0.01648127704025501 0.5941562127018365 0.014926857289822336 0.6218910034719799 0.013627611288937172 0.6148360428700432 0.012863575358821473 0.6316475047454626 0.011613506431628635 0.6304329687448134 0.010688307414604904 0.6395360711362453 0.009944167710997405 0.6417317937783003 0.008282618266259057 0.6464192719860885 0.008427952061924406 0.6507958614430545 0.0062516193420844475 0.650998707814648 0.005352543253607115 0.6564640864537524 0.00444612155082319 0.6537926145703156 0.003353268510819472 0.6578958631986491 0.003898418377417333 0.6538147249131628 0.0031009441978869035 0.6583235102735934 0.004066073278074313 0.6526691815278508 0.004476863187575506 0.6562920062210456 0.00647013527289821 0.6510962579781345 0.006263074435767392 0.6526498295738608 0.008036407827669992 0.6471688817797956 0.007860935743611026 0.6453475951529498 0.009550717987239828 0.6401940761047663 0.011552699537804668 0.6353232303558636 0.010542149569327735 0.630032102007344 0.013185635642050351 0.6201749857982917 0.011957620145608005 0.614819189912977 0.01313708163536355 0.5979462051580425 0.011662348183286715 0.5977080495294236 0.01193889674066375 0.563311664144738 0.008927272448876294 0.5765971409821097 0.010734152991207994
8 0.0 0.0 0.0 0.2 0.0 0.0 0.0 output/BCC/BCC_6b738c9a057c7ccb33fe860a7e794248 6b738c9a057c7ccb33fe860a7e794248 0.5766728918851037 0.012111414191176301 0.619254110600886 0.007654705960053367 0.6020821418691173 0.011080340865239754 0.6267523513408852 0.006327976103732864 0.6163851455938728 0.008784340490742249 0.6318152044499025 0.005101135945543378 0.6258596032513913 0.00671138459718275 0.6361671582519737 0.004128458886835169 0.6326851542440298 0.005253900331735938 0.6389294191917625 0.004134210503546723 0.6377766335084831 0.003699374340120643 0.6422689897733038 0.003959943184768117 0.6414004844915014 0.0028319819209817825 0.6448580577265846 0.0037535263170551205 0.6443489728624534 0.0030926918528754546 0.646690443696669 0.0037049438148316336 0.6460562153822198 0.0029605032692547194 0.6475817378755793 0.0038049288869173433 0.6478194141930168 0.00367707954524727 0.6483851526989561 0.0037019209751211857 0.6489051122879486 0.0036247132467559185 0.6495948824302301 0.003865228231370226 0.649887835544612 0.00413608853741559 0.6504804549493917 0.0039531019557641316 0.6512579935477572 0.0037483827055999333 0.6501346131355399 0.003427444327419835 0.650459772202004 0.002921437670037661 0.6492172134141118 0.0023493161281014445 0.6484262409451069 0.0024546228019007646 0.6472426101775696 0.002936534871812297 0.6421825060591513 0.0043530779605389985 0.6438633357133483 0.0036908043943732283 0.6270617974590342 0.009282636418283205 0.637010962091072 0.006823800072291407

View File

@ -0,0 +1,71 @@
worker,root,class_name,use_preprocessed,n_mels,sr,hop_length,n_fft,stretch,loudness_ratio,shift_ratio,noise_ratio,mask_ratio,speed_amount,speed_min,speed_max,max,,,
11,data,BinaryMasksDataset,FALSE,64,16000,256,512,FALSE,0,0,0,0,0,0,0,65.1,65.816,0.38641371,None
11,data,BinaryMasksDataset,FALSE,64,16000,256,512,FALSE,0,0,0,0,0,0,0,66.19,,,
11,data,BinaryMasksDataset,FALSE,64,16000,256,512,FALSE,0,0,0,0,0,0,0,65.78,,,
11,data,BinaryMasksDataset,FALSE,64,16000,256,512,FALSE,0,0,0,0,0,0,0,65.9,,,
11,data,BinaryMasksDataset,FALSE,64,16000,256,512,FALSE,0,0,0,0,0,0,0,66.17,,,
11,data,BinaryMasksDataset,FALSE,64,16000,256,512,FALSE,0,0,0,0,0,0,0,66.13,,,
11,data,BinaryMasksDataset,FALSE,64,16000,256,512,FALSE,0,0,0,0,0,0,0,65.18,,,
11,data,BinaryMasksDataset,FALSE,64,16000,256,512,FALSE,0,0,0,0,0,0,0,65.77,,,
11,data,BinaryMasksDataset,FALSE,64,16000,256,512,FALSE,0,0,0,0,0,0,0,66.02,,,
11,data,BinaryMasksDataset,FALSE,64,16000,256,512,FALSE,0,0,0,0,0,0,0,65.92,,,
11,data,BinaryMasksDataset,FALSE,64,16000,256,512,TRUE,0,0,0.4,0,0,0,0,65.11,64.479,0.461168805,Noise
11,data,BinaryMasksDataset,FALSE,64,16000,256,512,TRUE,0,0,0.4,0,0,0,0,64.47,,,
11,data,BinaryMasksDataset,FALSE,64,16000,256,512,TRUE,0,0,0.4,0,0,0,0,64.79,,,
11,data,BinaryMasksDataset,FALSE,64,16000,256,512,TRUE,0,0,0.4,0,0,0,0,63.56,,,
11,data,BinaryMasksDataset,FALSE,64,16000,256,512,TRUE,0,0,0.4,0,0,0,0,64.44,,,
11,data,BinaryMasksDataset,FALSE,64,16000,256,512,TRUE,0,0,0.4,0,0,0,0,64.46,,,
11,data,BinaryMasksDataset,FALSE,64,16000,256,512,TRUE,0,0,0.4,0,0,0,0,64.29,,,
11,data,BinaryMasksDataset,FALSE,64,16000,256,512,TRUE,0,0,0.4,0,0,0,0,64.48,,,
11,data,BinaryMasksDataset,FALSE,64,16000,256,512,TRUE,0,0,0.4,0,0,0,0,64.09,,,
11,data,BinaryMasksDataset,FALSE,64,16000,256,512,TRUE,0,0,0.4,0,0,0,0,65.1,,,
11,data,BinaryMasksDataset,FALSE,64,16000,256,512,TRUE,0.4,0,0,0,0,0,0,65.95,65.646,0.499893322,Loudness
11,data,BinaryMasksDataset,FALSE,64,16000,256,512,TRUE,0.4,0,0,0,0,0,0,66,,,
11,data,BinaryMasksDataset,FALSE,64,16000,256,512,TRUE,0.4,0,0,0,0,0,0,65.14,,,
11,data,BinaryMasksDataset,FALSE,64,16000,256,512,TRUE,0.4,0,0,0,0,0,0,65.84,,,
11,data,BinaryMasksDataset,FALSE,64,16000,256,512,TRUE,0.4,0,0,0,0,0,0,66.27,,,
11,data,BinaryMasksDataset,FALSE,64,16000,256,512,TRUE,0.4,0,0,0,0,0,0,65.27,,,
11,data,BinaryMasksDataset,FALSE,64,16000,256,512,TRUE,0.4,0,0,0,0,0,0,65.05,,,
11,data,BinaryMasksDataset,FALSE,64,16000,256,512,TRUE,0.4,0,0,0,0,0,0,65.43,,,
11,data,BinaryMasksDataset,FALSE,64,16000,256,512,TRUE,0.4,0,0,0,0,0,0,66.38,,,
11,data,BinaryMasksDataset,FALSE,64,16000,256,512,TRUE,0.4,0,0,0,0,0,0,65.13,,,
11,data,BinaryMasksDataset,FALSE,64,16000,256,512,TRUE,0,0.4,0,0,0,0,0,68.85,68.186,0.444727132,Shift
11,data,BinaryMasksDataset,FALSE,64,16000,256,512,TRUE,0,0.4,0,0,0,0,0,67.6,,,
11,data,BinaryMasksDataset,FALSE,64,16000,256,512,TRUE,0,0.4,0,0,0,0,0,68.03,,,
11,data,BinaryMasksDataset,FALSE,64,16000,256,512,TRUE,0,0.4,0,0,0,0,0,68.22,,,
11,data,BinaryMasksDataset,FALSE,64,16000,256,512,TRUE,0,0.4,0,0,0,0,0,68.66,,,
11,data,BinaryMasksDataset,FALSE,64,16000,256,512,TRUE,0,0.4,0,0,0,0,0,68.56,,,
11,data,BinaryMasksDataset,FALSE,64,16000,256,512,TRUE,0,0.4,0,0,0,0,0,68.28,,,
11,data,BinaryMasksDataset,FALSE,64,16000,256,512,TRUE,0,0.4,0,0,0,0,0,67.89,,,
11,data,BinaryMasksDataset,FALSE,64,16000,256,512,TRUE,0,0.4,0,0,0,0,0,68.29,,,
11,data,BinaryMasksDataset,FALSE,64,16000,256,512,TRUE,0,0.4,0,0,0,0,0,67.48,,,
11,data,BinaryMasksDataset,FALSE,64,16000,256,512,TRUE,0,0,0,0,0.4,0.7,1.7,66.07,66.394,0.342967443,Speed
11,data,BinaryMasksDataset,FALSE,64,16000,256,512,TRUE,0,0,0,0,0.4,0.7,1.7,66.46,,,
11,data,BinaryMasksDataset,FALSE,64,16000,256,512,TRUE,0,0,0,0,0.4,0.7,1.7,65.89,,,
11,data,BinaryMasksDataset,FALSE,64,16000,256,512,TRUE,0,0,0,0,0.4,0.7,1.7,67,,,
11,data,BinaryMasksDataset,FALSE,64,16000,256,512,TRUE,0,0,0,0,0.4,0.7,1.7,66.31,,,
11,data,BinaryMasksDataset,FALSE,64,16000,256,512,TRUE,0,0,0,0,0.4,0.7,1.7,66.56,,,
11,data,BinaryMasksDataset,FALSE,64,16000,256,512,TRUE,0,0,0,0,0.4,0.7,1.7,66.31,,,
11,data,BinaryMasksDataset,FALSE,64,16000,256,512,TRUE,0,0,0,0,0.4,0.7,1.7,66.71,,,
11,data,BinaryMasksDataset,FALSE,64,16000,256,512,TRUE,0,0,0,0,0.4,0.7,1.7,66.02,,,
11,data,BinaryMasksDataset,FALSE,64,16000,256,512,TRUE,0,0,0,0,0.4,0.7,1.7,66.61,,,
11,data,BinaryMasksDataset,FALSE,64,16000,256,512,TRUE,0.4,0.4,0.4,0.2,0.4,0.7,1.7,66.17,66.348,0.385625034,All
11,data,BinaryMasksDataset,FALSE,64,16000,256,512,TRUE,0.4,0.4,0.4,0.2,0.4,0.7,1.7,66.63,,,
11,data,BinaryMasksDataset,FALSE,64,16000,256,512,TRUE,0.4,0.4,0.4,0.2,0.4,0.7,1.7,66.05,,,
11,data,BinaryMasksDataset,FALSE,64,16000,256,512,TRUE,0.4,0.4,0.4,0.2,0.4,0.7,1.7,66,,,
11,data,BinaryMasksDataset,FALSE,64,16000,256,512,TRUE,0.4,0.4,0.4,0.2,0.4,0.7,1.7,66.45,,,
11,data,BinaryMasksDataset,FALSE,64,16000,256,512,TRUE,0.4,0.4,0.4,0.2,0.4,0.7,1.7,66.03,,,
11,data,BinaryMasksDataset,FALSE,64,16000,256,512,TRUE,0.4,0.4,0.4,0.2,0.4,0.7,1.7,66.71,,,
11,data,BinaryMasksDataset,FALSE,64,16000,256,512,TRUE,0.4,0.4,0.4,0.2,0.4,0.7,1.7,66.52,,,
11,data,BinaryMasksDataset,FALSE,64,16000,256,512,TRUE,0.4,0.4,0.4,0.2,0.4,0.7,1.7,65.86,,,
11,data,BinaryMasksDataset,FALSE,64,16000,256,512,TRUE,0.4,0.4,0.4,0.2,0.4,0.7,1.7,67.06,,,
11,data,BinaryMasksDataset,FALSE,64,16000,256,512,TRUE,0,0,0,0.2,0,0,0,65.14,65.083,0.323077218,Mask
11,data,BinaryMasksDataset,FALSE,64,16000,256,512,TRUE,0,0,0,0.2,0,0,0,65.31,,,
11,data,BinaryMasksDataset,FALSE,64,16000,256,512,TRUE,0,0,0,0.2,0,0,0,65.18,,,
11,data,BinaryMasksDataset,FALSE,64,16000,256,512,TRUE,0,0,0,0.2,0,0,0,65.37,,,
11,data,BinaryMasksDataset,FALSE,64,16000,256,512,TRUE,0,0,0,0.2,0,0,0,65.04,,,
11,data,BinaryMasksDataset,FALSE,64,16000,256,512,TRUE,0,0,0,0.2,0,0,0,65.18,,,
11,data,BinaryMasksDataset,FALSE,64,16000,256,512,TRUE,0,0,0,0.2,0,0,0,65.18,,,
11,data,BinaryMasksDataset,FALSE,64,16000,256,512,TRUE,0,0,0,0.2,0,0,0,64.4,,,
11,data,BinaryMasksDataset,FALSE,64,16000,256,512,TRUE,0,0,0,0.2,0,0,0,65.4,,,
11,data,BinaryMasksDataset,FALSE,64,16000,256,512,TRUE,0,0,0,0.2,0,0,0,64.63,,,
1 worker root class_name use_preprocessed n_mels sr hop_length n_fft stretch loudness_ratio shift_ratio noise_ratio mask_ratio speed_amount speed_min speed_max max
2 11 data BinaryMasksDataset FALSE 64 16000 256 512 FALSE 0 0 0 0 0 0 0 65.1 65.816 0.38641371 None
3 11 data BinaryMasksDataset FALSE 64 16000 256 512 FALSE 0 0 0 0 0 0 0 66.19
4 11 data BinaryMasksDataset FALSE 64 16000 256 512 FALSE 0 0 0 0 0 0 0 65.78
5 11 data BinaryMasksDataset FALSE 64 16000 256 512 FALSE 0 0 0 0 0 0 0 65.9
6 11 data BinaryMasksDataset FALSE 64 16000 256 512 FALSE 0 0 0 0 0 0 0 66.17
7 11 data BinaryMasksDataset FALSE 64 16000 256 512 FALSE 0 0 0 0 0 0 0 66.13
8 11 data BinaryMasksDataset FALSE 64 16000 256 512 FALSE 0 0 0 0 0 0 0 65.18
9 11 data BinaryMasksDataset FALSE 64 16000 256 512 FALSE 0 0 0 0 0 0 0 65.77
10 11 data BinaryMasksDataset FALSE 64 16000 256 512 FALSE 0 0 0 0 0 0 0 66.02
11 11 data BinaryMasksDataset FALSE 64 16000 256 512 FALSE 0 0 0 0 0 0 0 65.92
12 11 data BinaryMasksDataset FALSE 64 16000 256 512 TRUE 0 0 0.4 0 0 0 0 65.11 64.479 0.461168805 Noise
13 11 data BinaryMasksDataset FALSE 64 16000 256 512 TRUE 0 0 0.4 0 0 0 0 64.47
14 11 data BinaryMasksDataset FALSE 64 16000 256 512 TRUE 0 0 0.4 0 0 0 0 64.79
15 11 data BinaryMasksDataset FALSE 64 16000 256 512 TRUE 0 0 0.4 0 0 0 0 63.56
16 11 data BinaryMasksDataset FALSE 64 16000 256 512 TRUE 0 0 0.4 0 0 0 0 64.44
17 11 data BinaryMasksDataset FALSE 64 16000 256 512 TRUE 0 0 0.4 0 0 0 0 64.46
18 11 data BinaryMasksDataset FALSE 64 16000 256 512 TRUE 0 0 0.4 0 0 0 0 64.29
19 11 data BinaryMasksDataset FALSE 64 16000 256 512 TRUE 0 0 0.4 0 0 0 0 64.48
20 11 data BinaryMasksDataset FALSE 64 16000 256 512 TRUE 0 0 0.4 0 0 0 0 64.09
21 11 data BinaryMasksDataset FALSE 64 16000 256 512 TRUE 0 0 0.4 0 0 0 0 65.1
22 11 data BinaryMasksDataset FALSE 64 16000 256 512 TRUE 0.4 0 0 0 0 0 0 65.95 65.646 0.499893322 Loudness
23 11 data BinaryMasksDataset FALSE 64 16000 256 512 TRUE 0.4 0 0 0 0 0 0 66
24 11 data BinaryMasksDataset FALSE 64 16000 256 512 TRUE 0.4 0 0 0 0 0 0 65.14
25 11 data BinaryMasksDataset FALSE 64 16000 256 512 TRUE 0.4 0 0 0 0 0 0 65.84
26 11 data BinaryMasksDataset FALSE 64 16000 256 512 TRUE 0.4 0 0 0 0 0 0 66.27
27 11 data BinaryMasksDataset FALSE 64 16000 256 512 TRUE 0.4 0 0 0 0 0 0 65.27
28 11 data BinaryMasksDataset FALSE 64 16000 256 512 TRUE 0.4 0 0 0 0 0 0 65.05
29 11 data BinaryMasksDataset FALSE 64 16000 256 512 TRUE 0.4 0 0 0 0 0 0 65.43
30 11 data BinaryMasksDataset FALSE 64 16000 256 512 TRUE 0.4 0 0 0 0 0 0 66.38
31 11 data BinaryMasksDataset FALSE 64 16000 256 512 TRUE 0.4 0 0 0 0 0 0 65.13
32 11 data BinaryMasksDataset FALSE 64 16000 256 512 TRUE 0 0.4 0 0 0 0 0 68.85 68.186 0.444727132 Shift
33 11 data BinaryMasksDataset FALSE 64 16000 256 512 TRUE 0 0.4 0 0 0 0 0 67.6
34 11 data BinaryMasksDataset FALSE 64 16000 256 512 TRUE 0 0.4 0 0 0 0 0 68.03
35 11 data BinaryMasksDataset FALSE 64 16000 256 512 TRUE 0 0.4 0 0 0 0 0 68.22
36 11 data BinaryMasksDataset FALSE 64 16000 256 512 TRUE 0 0.4 0 0 0 0 0 68.66
37 11 data BinaryMasksDataset FALSE 64 16000 256 512 TRUE 0 0.4 0 0 0 0 0 68.56
38 11 data BinaryMasksDataset FALSE 64 16000 256 512 TRUE 0 0.4 0 0 0 0 0 68.28
39 11 data BinaryMasksDataset FALSE 64 16000 256 512 TRUE 0 0.4 0 0 0 0 0 67.89
40 11 data BinaryMasksDataset FALSE 64 16000 256 512 TRUE 0 0.4 0 0 0 0 0 68.29
41 11 data BinaryMasksDataset FALSE 64 16000 256 512 TRUE 0 0.4 0 0 0 0 0 67.48
42 11 data BinaryMasksDataset FALSE 64 16000 256 512 TRUE 0 0 0 0 0.4 0.7 1.7 66.07 66.394 0.342967443 Speed
43 11 data BinaryMasksDataset FALSE 64 16000 256 512 TRUE 0 0 0 0 0.4 0.7 1.7 66.46
44 11 data BinaryMasksDataset FALSE 64 16000 256 512 TRUE 0 0 0 0 0.4 0.7 1.7 65.89
45 11 data BinaryMasksDataset FALSE 64 16000 256 512 TRUE 0 0 0 0 0.4 0.7 1.7 67
46 11 data BinaryMasksDataset FALSE 64 16000 256 512 TRUE 0 0 0 0 0.4 0.7 1.7 66.31
47 11 data BinaryMasksDataset FALSE 64 16000 256 512 TRUE 0 0 0 0 0.4 0.7 1.7 66.56
48 11 data BinaryMasksDataset FALSE 64 16000 256 512 TRUE 0 0 0 0 0.4 0.7 1.7 66.31
49 11 data BinaryMasksDataset FALSE 64 16000 256 512 TRUE 0 0 0 0 0.4 0.7 1.7 66.71
50 11 data BinaryMasksDataset FALSE 64 16000 256 512 TRUE 0 0 0 0 0.4 0.7 1.7 66.02
51 11 data BinaryMasksDataset FALSE 64 16000 256 512 TRUE 0 0 0 0 0.4 0.7 1.7 66.61
52 11 data BinaryMasksDataset FALSE 64 16000 256 512 TRUE 0.4 0.4 0.4 0.2 0.4 0.7 1.7 66.17 66.348 0.385625034 All
53 11 data BinaryMasksDataset FALSE 64 16000 256 512 TRUE 0.4 0.4 0.4 0.2 0.4 0.7 1.7 66.63
54 11 data BinaryMasksDataset FALSE 64 16000 256 512 TRUE 0.4 0.4 0.4 0.2 0.4 0.7 1.7 66.05
55 11 data BinaryMasksDataset FALSE 64 16000 256 512 TRUE 0.4 0.4 0.4 0.2 0.4 0.7 1.7 66
56 11 data BinaryMasksDataset FALSE 64 16000 256 512 TRUE 0.4 0.4 0.4 0.2 0.4 0.7 1.7 66.45
57 11 data BinaryMasksDataset FALSE 64 16000 256 512 TRUE 0.4 0.4 0.4 0.2 0.4 0.7 1.7 66.03
58 11 data BinaryMasksDataset FALSE 64 16000 256 512 TRUE 0.4 0.4 0.4 0.2 0.4 0.7 1.7 66.71
59 11 data BinaryMasksDataset FALSE 64 16000 256 512 TRUE 0.4 0.4 0.4 0.2 0.4 0.7 1.7 66.52
60 11 data BinaryMasksDataset FALSE 64 16000 256 512 TRUE 0.4 0.4 0.4 0.2 0.4 0.7 1.7 65.86
61 11 data BinaryMasksDataset FALSE 64 16000 256 512 TRUE 0.4 0.4 0.4 0.2 0.4 0.7 1.7 67.06
62 11 data BinaryMasksDataset FALSE 64 16000 256 512 TRUE 0 0 0 0.2 0 0 0 65.14 65.083 0.323077218 Mask
63 11 data BinaryMasksDataset FALSE 64 16000 256 512 TRUE 0 0 0 0.2 0 0 0 65.31
64 11 data BinaryMasksDataset FALSE 64 16000 256 512 TRUE 0 0 0 0.2 0 0 0 65.18
65 11 data BinaryMasksDataset FALSE 64 16000 256 512 TRUE 0 0 0 0.2 0 0 0 65.37
66 11 data BinaryMasksDataset FALSE 64 16000 256 512 TRUE 0 0 0 0.2 0 0 0 65.04
67 11 data BinaryMasksDataset FALSE 64 16000 256 512 TRUE 0 0 0 0.2 0 0 0 65.18
68 11 data BinaryMasksDataset FALSE 64 16000 256 512 TRUE 0 0 0 0.2 0 0 0 65.18
69 11 data BinaryMasksDataset FALSE 64 16000 256 512 TRUE 0 0 0 0.2 0 0 0 64.4
70 11 data BinaryMasksDataset FALSE 64 16000 256 512 TRUE 0 0 0 0.2 0 0 0 65.4
71 11 data BinaryMasksDataset FALSE 64 16000 256 512 TRUE 0 0 0 0.2 0 0 0 64.63

View File

@ -0,0 +1,71 @@
worker,root,class_name,use_preprocessed,n_mels,sr,hop_length,n_fft,stretch,loudness_ratio,shift_ratio,noise_ratio,mask_ratio,speed_amount,speed_min,speed_max,max,,,
11,data,BinaryMasksDataset,FALSE,64,16000,256,512,TRUE,0,0,0.4,0,0,0,0,60.29,61.349,0.670496499,noise
11,data,BinaryMasksDataset,FALSE,64,16000,256,512,TRUE,0,0,0.4,0,0,0,0,61.95,,,
11,data,BinaryMasksDataset,FALSE,64,16000,256,512,TRUE,0,0,0.4,0,0,0,0,62.12,,,
11,data,BinaryMasksDataset,FALSE,64,16000,256,512,TRUE,0,0,0.4,0,0,0,0,61.33,,,
11,data,BinaryMasksDataset,FALSE,64,16000,256,512,TRUE,0,0,0.4,0,0,0,0,61.73,,,
11,data,BinaryMasksDataset,FALSE,64,16000,256,512,TRUE,0,0,0.4,0,0,0,0,60.74,,,
11,data,BinaryMasksDataset,FALSE,64,16000,256,512,TRUE,0,0,0.4,0,0,0,0,61.09,,,
11,data,BinaryMasksDataset,FALSE,64,16000,256,512,TRUE,0,0,0.4,0,0,0,0,60.82,,,
11,data,BinaryMasksDataset,FALSE,64,16000,256,512,TRUE,0,0,0.4,0,0,0,0,62.36,,,
11,data,BinaryMasksDataset,FALSE,64,16000,256,512,TRUE,0,0,0.4,0,0,0,0,61.06,,,
11,data,BinaryMasksDataset,FALSE,64,16000,256,512,TRUE,0,0,0,0,0.4,0.7,1.7,63.21,63.542,0.90676225,speed
11,data,BinaryMasksDataset,FALSE,64,16000,256,512,TRUE,0,0,0,0,0.4,0.7,1.7,65.9,,,
11,data,BinaryMasksDataset,FALSE,64,16000,256,512,TRUE,0,0,0,0,0.4,0.7,1.7,63.72,,,
11,data,BinaryMasksDataset,FALSE,64,16000,256,512,TRUE,0,0,0,0,0.4,0.7,1.7,63.88,,,
11,data,BinaryMasksDataset,FALSE,64,16000,256,512,TRUE,0,0,0,0,0.4,0.7,1.7,63.2,,,
11,data,BinaryMasksDataset,FALSE,64,16000,256,512,TRUE,0,0,0,0,0.4,0.7,1.7,62.72,,,
11,data,BinaryMasksDataset,FALSE,64,16000,256,512,TRUE,0,0,0,0,0.4,0.7,1.7,63.12,,,
11,data,BinaryMasksDataset,FALSE,64,16000,256,512,TRUE,0,0,0,0,0.4,0.7,1.7,62.77,,,
11,data,BinaryMasksDataset,FALSE,64,16000,256,512,TRUE,0,0,0,0,0.4,0.7,1.7,63.45,,,
11,data,BinaryMasksDataset,FALSE,64,16000,256,512,TRUE,0,0,0,0,0.4,0.7,1.7,63.45,,,
11,data,BinaryMasksDataset,FALSE,64,16000,256,512,TRUE,0.4,0.4,0.4,0.2,0.4,0.7,1.7,64.23,63.488,0.788117307,all
11,data,BinaryMasksDataset,FALSE,64,16000,256,512,TRUE,0.4,0.4,0.4,0.2,0.4,0.7,1.7,63.7,,,
11,data,BinaryMasksDataset,FALSE,64,16000,256,512,TRUE,0.4,0.4,0.4,0.2,0.4,0.7,1.7,62.52,,,
11,data,BinaryMasksDataset,FALSE,64,16000,256,512,TRUE,0.4,0.4,0.4,0.2,0.4,0.7,1.7,63.4,,,
11,data,BinaryMasksDataset,FALSE,64,16000,256,512,TRUE,0.4,0.4,0.4,0.2,0.4,0.7,1.7,62.51,,,
11,data,BinaryMasksDataset,FALSE,64,16000,256,512,TRUE,0.4,0.4,0.4,0.2,0.4,0.7,1.7,64.39,,,
11,data,BinaryMasksDataset,FALSE,64,16000,256,512,TRUE,0.4,0.4,0.4,0.2,0.4,0.7,1.7,62.34,,,
11,data,BinaryMasksDataset,FALSE,64,16000,256,512,TRUE,0.4,0.4,0.4,0.2,0.4,0.7,1.7,63.7,,,
11,data,BinaryMasksDataset,FALSE,64,16000,256,512,TRUE,0.4,0.4,0.4,0.2,0.4,0.7,1.7,63.66,,,
11,data,BinaryMasksDataset,FALSE,64,16000,256,512,TRUE,0.4,0.4,0.4,0.2,0.4,0.7,1.7,64.43,,,
11,data,BinaryMasksDataset,FALSE,64,16000,256,512,TRUE,0,0,0,0.2,0,0,0,62.61,62.268,0.334524538,mask
11,data,BinaryMasksDataset,FALSE,64,16000,256,512,TRUE,0,0,0,0.2,0,0,0,62.57,,,
11,data,BinaryMasksDataset,FALSE,64,16000,256,512,TRUE,0,0,0,0.2,0,0,0,62.74,,,
11,data,BinaryMasksDataset,FALSE,64,16000,256,512,TRUE,0,0,0,0.2,0,0,0,61.75,,,
11,data,BinaryMasksDataset,FALSE,64,16000,256,512,TRUE,0,0,0,0.2,0,0,0,62.22,,,
11,data,BinaryMasksDataset,FALSE,64,16000,256,512,TRUE,0,0,0,0.2,0,0,0,62.12,,,
11,data,BinaryMasksDataset,FALSE,64,16000,256,512,TRUE,0,0,0,0.2,0,0,0,62.49,,,
11,data,BinaryMasksDataset,FALSE,64,16000,256,512,TRUE,0,0,0,0.2,0,0,0,62.15,,,
11,data,BinaryMasksDataset,FALSE,64,16000,256,512,TRUE,0,0,0,0.2,0,0,0,61.8,,,
11,data,BinaryMasksDataset,FALSE,64,16000,256,512,TRUE,0,0,0,0.2,0,0,0,62.23,,,
11,data,BinaryMasksDataset,FALSE,64,16000,256,512,FALSE,0,0,0,0,0,0,0,63.35,63.541,0.255884088,none
11,data,BinaryMasksDataset,FALSE,64,16000,256,512,FALSE,0,0,0,0,0,0,0,63.28,,,
11,data,BinaryMasksDataset,FALSE,64,16000,256,512,FALSE,0,0,0,0,0,0,0,63.78,,,
11,data,BinaryMasksDataset,FALSE,64,16000,256,512,FALSE,0,0,0,0,0,0,0,63.47,,,
11,data,BinaryMasksDataset,FALSE,64,16000,256,512,FALSE,0,0,0,0,0,0,0,63.16,,,
11,data,BinaryMasksDataset,FALSE,64,16000,256,512,FALSE,0,0,0,0,0,0,0,63.57,,,
11,data,BinaryMasksDataset,FALSE,64,16000,256,512,FALSE,0,0,0,0,0,0,0,63.86,,,
11,data,BinaryMasksDataset,FALSE,64,16000,256,512,FALSE,0,0,0,0,0,0,0,63.9,,,
11,data,BinaryMasksDataset,FALSE,64,16000,256,512,FALSE,0,0,0,0,0,0,0,63.67,,,
11,data,BinaryMasksDataset,FALSE,64,16000,256,512,FALSE,0,0,0,0,0,0,0,63.37,,,
11,data,BinaryMasksDataset,FALSE,64,16000,256,512,TRUE,0,0.4,0,0,0,0,0,66.65,66.309,0.693468737,shift
11,data,BinaryMasksDataset,FALSE,64,16000,256,512,TRUE,0,0.4,0,0,0,0,0,66.8,,,
11,data,BinaryMasksDataset,FALSE,64,16000,256,512,TRUE,0,0.4,0,0,0,0,0,66.64,,,
11,data,BinaryMasksDataset,FALSE,64,16000,256,512,TRUE,0,0.4,0,0,0,0,0,66.75,,,
11,data,BinaryMasksDataset,FALSE,64,16000,256,512,TRUE,0,0.4,0,0,0,0,0,65.74,,,
11,data,BinaryMasksDataset,FALSE,64,16000,256,512,TRUE,0,0.4,0,0,0,0,0,66.78,,,
11,data,BinaryMasksDataset,FALSE,64,16000,256,512,TRUE,0,0.4,0,0,0,0,0,66.41,,,
11,data,BinaryMasksDataset,FALSE,64,16000,256,512,TRUE,0,0.4,0,0,0,0,0,65.6,,,
11,data,BinaryMasksDataset,FALSE,64,16000,256,512,TRUE,0,0.4,0,0,0,0,0,64.81,,,
11,data,BinaryMasksDataset,FALSE,64,16000,256,512,TRUE,0,0.4,0,0,0,0,0,66.91,,,
11,data,BinaryMasksDataset,FALSE,64,16000,256,512,TRUE,0.4,0,0,0,0,0,0,61.44,62.869,0.640979286,loudness
11,data,BinaryMasksDataset,FALSE,64,16000,256,512,TRUE,0.4,0,0,0,0,0,0,63.03,,,
11,data,BinaryMasksDataset,FALSE,64,16000,256,512,TRUE,0.4,0,0,0,0,0,0,63.33,,,
11,data,BinaryMasksDataset,FALSE,64,16000,256,512,TRUE,0.4,0,0,0,0,0,0,62.98,,,
11,data,BinaryMasksDataset,FALSE,64,16000,256,512,TRUE,0.4,0,0,0,0,0,0,62.46,,,
11,data,BinaryMasksDataset,FALSE,64,16000,256,512,TRUE,0.4,0,0,0,0,0,0,62.56,,,
11,data,BinaryMasksDataset,FALSE,64,16000,256,512,TRUE,0.4,0,0,0,0,0,0,63.13,,,
11,data,BinaryMasksDataset,FALSE,64,16000,256,512,TRUE,0.4,0,0,0,0,0,0,63.72,,,
11,data,BinaryMasksDataset,FALSE,64,16000,256,512,TRUE,0.4,0,0,0,0,0,0,63.41,,,
11,data,BinaryMasksDataset,FALSE,64,16000,256,512,TRUE,0.4,0,0,0,0,0,0,62.63,,,
1 worker root class_name use_preprocessed n_mels sr hop_length n_fft stretch loudness_ratio shift_ratio noise_ratio mask_ratio speed_amount speed_min speed_max max
2 11 data BinaryMasksDataset FALSE 64 16000 256 512 TRUE 0 0 0.4 0 0 0 0 60.29 61.349 0.670496499 noise
3 11 data BinaryMasksDataset FALSE 64 16000 256 512 TRUE 0 0 0.4 0 0 0 0 61.95
4 11 data BinaryMasksDataset FALSE 64 16000 256 512 TRUE 0 0 0.4 0 0 0 0 62.12
5 11 data BinaryMasksDataset FALSE 64 16000 256 512 TRUE 0 0 0.4 0 0 0 0 61.33
6 11 data BinaryMasksDataset FALSE 64 16000 256 512 TRUE 0 0 0.4 0 0 0 0 61.73
7 11 data BinaryMasksDataset FALSE 64 16000 256 512 TRUE 0 0 0.4 0 0 0 0 60.74
8 11 data BinaryMasksDataset FALSE 64 16000 256 512 TRUE 0 0 0.4 0 0 0 0 61.09
9 11 data BinaryMasksDataset FALSE 64 16000 256 512 TRUE 0 0 0.4 0 0 0 0 60.82
10 11 data BinaryMasksDataset FALSE 64 16000 256 512 TRUE 0 0 0.4 0 0 0 0 62.36
11 11 data BinaryMasksDataset FALSE 64 16000 256 512 TRUE 0 0 0.4 0 0 0 0 61.06
12 11 data BinaryMasksDataset FALSE 64 16000 256 512 TRUE 0 0 0 0 0.4 0.7 1.7 63.21 63.542 0.90676225 speed
13 11 data BinaryMasksDataset FALSE 64 16000 256 512 TRUE 0 0 0 0 0.4 0.7 1.7 65.9
14 11 data BinaryMasksDataset FALSE 64 16000 256 512 TRUE 0 0 0 0 0.4 0.7 1.7 63.72
15 11 data BinaryMasksDataset FALSE 64 16000 256 512 TRUE 0 0 0 0 0.4 0.7 1.7 63.88
16 11 data BinaryMasksDataset FALSE 64 16000 256 512 TRUE 0 0 0 0 0.4 0.7 1.7 63.2
17 11 data BinaryMasksDataset FALSE 64 16000 256 512 TRUE 0 0 0 0 0.4 0.7 1.7 62.72
18 11 data BinaryMasksDataset FALSE 64 16000 256 512 TRUE 0 0 0 0 0.4 0.7 1.7 63.12
19 11 data BinaryMasksDataset FALSE 64 16000 256 512 TRUE 0 0 0 0 0.4 0.7 1.7 62.77
20 11 data BinaryMasksDataset FALSE 64 16000 256 512 TRUE 0 0 0 0 0.4 0.7 1.7 63.45
21 11 data BinaryMasksDataset FALSE 64 16000 256 512 TRUE 0 0 0 0 0.4 0.7 1.7 63.45
22 11 data BinaryMasksDataset FALSE 64 16000 256 512 TRUE 0.4 0.4 0.4 0.2 0.4 0.7 1.7 64.23 63.488 0.788117307 all
23 11 data BinaryMasksDataset FALSE 64 16000 256 512 TRUE 0.4 0.4 0.4 0.2 0.4 0.7 1.7 63.7
24 11 data BinaryMasksDataset FALSE 64 16000 256 512 TRUE 0.4 0.4 0.4 0.2 0.4 0.7 1.7 62.52
25 11 data BinaryMasksDataset FALSE 64 16000 256 512 TRUE 0.4 0.4 0.4 0.2 0.4 0.7 1.7 63.4
26 11 data BinaryMasksDataset FALSE 64 16000 256 512 TRUE 0.4 0.4 0.4 0.2 0.4 0.7 1.7 62.51
27 11 data BinaryMasksDataset FALSE 64 16000 256 512 TRUE 0.4 0.4 0.4 0.2 0.4 0.7 1.7 64.39
28 11 data BinaryMasksDataset FALSE 64 16000 256 512 TRUE 0.4 0.4 0.4 0.2 0.4 0.7 1.7 62.34
29 11 data BinaryMasksDataset FALSE 64 16000 256 512 TRUE 0.4 0.4 0.4 0.2 0.4 0.7 1.7 63.7
30 11 data BinaryMasksDataset FALSE 64 16000 256 512 TRUE 0.4 0.4 0.4 0.2 0.4 0.7 1.7 63.66
31 11 data BinaryMasksDataset FALSE 64 16000 256 512 TRUE 0.4 0.4 0.4 0.2 0.4 0.7 1.7 64.43
32 11 data BinaryMasksDataset FALSE 64 16000 256 512 TRUE 0 0 0 0.2 0 0 0 62.61 62.268 0.334524538 mask
33 11 data BinaryMasksDataset FALSE 64 16000 256 512 TRUE 0 0 0 0.2 0 0 0 62.57
34 11 data BinaryMasksDataset FALSE 64 16000 256 512 TRUE 0 0 0 0.2 0 0 0 62.74
35 11 data BinaryMasksDataset FALSE 64 16000 256 512 TRUE 0 0 0 0.2 0 0 0 61.75
36 11 data BinaryMasksDataset FALSE 64 16000 256 512 TRUE 0 0 0 0.2 0 0 0 62.22
37 11 data BinaryMasksDataset FALSE 64 16000 256 512 TRUE 0 0 0 0.2 0 0 0 62.12
38 11 data BinaryMasksDataset FALSE 64 16000 256 512 TRUE 0 0 0 0.2 0 0 0 62.49
39 11 data BinaryMasksDataset FALSE 64 16000 256 512 TRUE 0 0 0 0.2 0 0 0 62.15
40 11 data BinaryMasksDataset FALSE 64 16000 256 512 TRUE 0 0 0 0.2 0 0 0 61.8
41 11 data BinaryMasksDataset FALSE 64 16000 256 512 TRUE 0 0 0 0.2 0 0 0 62.23
42 11 data BinaryMasksDataset FALSE 64 16000 256 512 FALSE 0 0 0 0 0 0 0 63.35 63.541 0.255884088 none
43 11 data BinaryMasksDataset FALSE 64 16000 256 512 FALSE 0 0 0 0 0 0 0 63.28
44 11 data BinaryMasksDataset FALSE 64 16000 256 512 FALSE 0 0 0 0 0 0 0 63.78
45 11 data BinaryMasksDataset FALSE 64 16000 256 512 FALSE 0 0 0 0 0 0 0 63.47
46 11 data BinaryMasksDataset FALSE 64 16000 256 512 FALSE 0 0 0 0 0 0 0 63.16
47 11 data BinaryMasksDataset FALSE 64 16000 256 512 FALSE 0 0 0 0 0 0 0 63.57
48 11 data BinaryMasksDataset FALSE 64 16000 256 512 FALSE 0 0 0 0 0 0 0 63.86
49 11 data BinaryMasksDataset FALSE 64 16000 256 512 FALSE 0 0 0 0 0 0 0 63.9
50 11 data BinaryMasksDataset FALSE 64 16000 256 512 FALSE 0 0 0 0 0 0 0 63.67
51 11 data BinaryMasksDataset FALSE 64 16000 256 512 FALSE 0 0 0 0 0 0 0 63.37
52 11 data BinaryMasksDataset FALSE 64 16000 256 512 TRUE 0 0.4 0 0 0 0 0 66.65 66.309 0.693468737 shift
53 11 data BinaryMasksDataset FALSE 64 16000 256 512 TRUE 0 0.4 0 0 0 0 0 66.8
54 11 data BinaryMasksDataset FALSE 64 16000 256 512 TRUE 0 0.4 0 0 0 0 0 66.64
55 11 data BinaryMasksDataset FALSE 64 16000 256 512 TRUE 0 0.4 0 0 0 0 0 66.75
56 11 data BinaryMasksDataset FALSE 64 16000 256 512 TRUE 0 0.4 0 0 0 0 0 65.74
57 11 data BinaryMasksDataset FALSE 64 16000 256 512 TRUE 0 0.4 0 0 0 0 0 66.78
58 11 data BinaryMasksDataset FALSE 64 16000 256 512 TRUE 0 0.4 0 0 0 0 0 66.41
59 11 data BinaryMasksDataset FALSE 64 16000 256 512 TRUE 0 0.4 0 0 0 0 0 65.6
60 11 data BinaryMasksDataset FALSE 64 16000 256 512 TRUE 0 0.4 0 0 0 0 0 64.81
61 11 data BinaryMasksDataset FALSE 64 16000 256 512 TRUE 0 0.4 0 0 0 0 0 66.91
62 11 data BinaryMasksDataset FALSE 64 16000 256 512 TRUE 0.4 0 0 0 0 0 0 61.44 62.869 0.640979286 loudness
63 11 data BinaryMasksDataset FALSE 64 16000 256 512 TRUE 0.4 0 0 0 0 0 0 63.03
64 11 data BinaryMasksDataset FALSE 64 16000 256 512 TRUE 0.4 0 0 0 0 0 0 63.33
65 11 data BinaryMasksDataset FALSE 64 16000 256 512 TRUE 0.4 0 0 0 0 0 0 62.98
66 11 data BinaryMasksDataset FALSE 64 16000 256 512 TRUE 0.4 0 0 0 0 0 0 62.46
67 11 data BinaryMasksDataset FALSE 64 16000 256 512 TRUE 0.4 0 0 0 0 0 0 62.56
68 11 data BinaryMasksDataset FALSE 64 16000 256 512 TRUE 0.4 0 0 0 0 0 0 63.13
69 11 data BinaryMasksDataset FALSE 64 16000 256 512 TRUE 0.4 0 0 0 0 0 0 63.72
70 11 data BinaryMasksDataset FALSE 64 16000 256 512 TRUE 0.4 0 0 0 0 0 0 63.41
71 11 data BinaryMasksDataset FALSE 64 16000 256 512 TRUE 0.4 0 0 0 0 0 0 62.63

View File

@ -0,0 +1,71 @@
worker,root,class_name,use_preprocessed,n_mels,sr,hop_length,n_fft,stretch,loudness_ratio,shift_ratio,noise_ratio,mask_ratio,speed_amount,speed_min,speed_max,max,,,
11,data,BinaryMasksDataset,FALSE,64,16000,256,512,FALSE,0,0,0,0,0,0,0,64.84,64.714,0.302294926,None
11,data,BinaryMasksDataset,FALSE,64,16000,256,512,FALSE,0,0,0,0,0,0,0,64.67,,,
11,data,BinaryMasksDataset,FALSE,64,16000,256,512,FALSE,0,0,0,0,0,0,0,64.45,,,
11,data,BinaryMasksDataset,FALSE,64,16000,256,512,FALSE,0,0,0,0,0,0,0,64.88,,,
11,data,BinaryMasksDataset,FALSE,64,16000,256,512,FALSE,0,0,0,0,0,0,0,64.19,,,
11,data,BinaryMasksDataset,FALSE,64,16000,256,512,FALSE,0,0,0,0,0,0,0,65.08,,,
11,data,BinaryMasksDataset,FALSE,64,16000,256,512,FALSE,0,0,0,0,0,0,0,64.87,,,
11,data,BinaryMasksDataset,FALSE,64,16000,256,512,FALSE,0,0,0,0,0,0,0,64.58,,,
11,data,BinaryMasksDataset,FALSE,64,16000,256,512,FALSE,0,0,0,0,0,0,0,64.44,,,
11,data,BinaryMasksDataset,FALSE,64,16000,256,512,FALSE,0,0,0,0,0,0,0,65.14,,,
11,data,BinaryMasksDataset,FALSE,64,16000,256,512,TRUE,0,0,0,0,0.4,0.7,1.7,64.6,64.784,0.403517864,Speed
11,data,BinaryMasksDataset,FALSE,64,16000,256,512,TRUE,0,0,0,0,0.4,0.7,1.7,64.95,,,
11,data,BinaryMasksDataset,FALSE,64,16000,256,512,TRUE,0,0,0,0,0.4,0.7,1.7,64.86,,,
11,data,BinaryMasksDataset,FALSE,64,16000,256,512,TRUE,0,0,0,0,0.4,0.7,1.7,64.69,,,
11,data,BinaryMasksDataset,FALSE,64,16000,256,512,TRUE,0,0,0,0,0.4,0.7,1.7,64.79,,,
11,data,BinaryMasksDataset,FALSE,64,16000,256,512,TRUE,0,0,0,0,0.4,0.7,1.7,65.1,,,
11,data,BinaryMasksDataset,FALSE,64,16000,256,512,TRUE,0,0,0,0,0.4,0.7,1.7,63.91,,,
11,data,BinaryMasksDataset,FALSE,64,16000,256,512,TRUE,0,0,0,0,0.4,0.7,1.7,65.4,,,
11,data,BinaryMasksDataset,FALSE,64,16000,256,512,TRUE,0,0,0,0,0.4,0.7,1.7,64.5,,,
11,data,BinaryMasksDataset,FALSE,64,16000,256,512,TRUE,0,0,0,0,0.4,0.7,1.7,65.04,,,
11,data,BinaryMasksDataset,FALSE,64,16000,256,512,TRUE,0.4,0.4,0.4,0.2,0.4,0.7,1.7,65.17,65.029,0.406760918,All
11,data,BinaryMasksDataset,FALSE,64,16000,256,512,TRUE,0.4,0.4,0.4,0.2,0.4,0.7,1.7,64.34,,,
11,data,BinaryMasksDataset,FALSE,64,16000,256,512,TRUE,0.4,0.4,0.4,0.2,0.4,0.7,1.7,65.33,,,
11,data,BinaryMasksDataset,FALSE,64,16000,256,512,TRUE,0.4,0.4,0.4,0.2,0.4,0.7,1.7,65.27,,,
11,data,BinaryMasksDataset,FALSE,64,16000,256,512,TRUE,0.4,0.4,0.4,0.2,0.4,0.7,1.7,65.21,,,
11,data,BinaryMasksDataset,FALSE,64,16000,256,512,TRUE,0.4,0.4,0.4,0.2,0.4,0.7,1.7,65.29,,,
11,data,BinaryMasksDataset,FALSE,64,16000,256,512,TRUE,0.4,0.4,0.4,0.2,0.4,0.7,1.7,65.37,,,
11,data,BinaryMasksDataset,FALSE,64,16000,256,512,TRUE,0.4,0.4,0.4,0.2,0.4,0.7,1.7,65.09,,,
11,data,BinaryMasksDataset,FALSE,64,16000,256,512,TRUE,0.4,0.4,0.4,0.2,0.4,0.7,1.7,64.98,,,
11,data,BinaryMasksDataset,FALSE,64,16000,256,512,TRUE,0.4,0.4,0.4,0.2,0.4,0.7,1.7,64.24,,,
11,data,BinaryMasksDataset,FALSE,64,16000,256,512,TRUE,0,0,0.4,0,0,0,0,63.77,63.618,0.224192378,noise
11,data,BinaryMasksDataset,FALSE,64,16000,256,512,TRUE,0,0,0.4,0,0,0,0,63.65,,,
11,data,BinaryMasksDataset,FALSE,64,16000,256,512,TRUE,0,0,0.4,0,0,0,0,63.57,,,
11,data,BinaryMasksDataset,FALSE,64,16000,256,512,TRUE,0,0,0.4,0,0,0,0,63.37,,,
11,data,BinaryMasksDataset,FALSE,64,16000,256,512,TRUE,0,0,0.4,0,0,0,0,63.98,,,
11,data,BinaryMasksDataset,FALSE,64,16000,256,512,TRUE,0,0,0.4,0,0,0,0,63.19,,,
11,data,BinaryMasksDataset,FALSE,64,16000,256,512,TRUE,0,0,0.4,0,0,0,0,63.61,,,
11,data,BinaryMasksDataset,FALSE,64,16000,256,512,TRUE,0,0,0.4,0,0,0,0,63.77,,,
11,data,BinaryMasksDataset,FALSE,64,16000,256,512,TRUE,0,0,0.4,0,0,0,0,63.52,,,
11,data,BinaryMasksDataset,FALSE,64,16000,256,512,TRUE,0,0,0.4,0,0,0,0,63.75,,,
11,data,BinaryMasksDataset,FALSE,64,16000,256,512,TRUE,0.4,0,0,0,0,0,0,64.77,64.305,0.435488232,loudness
11,data,BinaryMasksDataset,FALSE,64,16000,256,512,TRUE,0.4,0,0,0,0,0,0,65.03,,,
11,data,BinaryMasksDataset,FALSE,64,16000,256,512,TRUE,0.4,0,0,0,0,0,0,63.83,,,
11,data,BinaryMasksDataset,FALSE,64,16000,256,512,TRUE,0.4,0,0,0,0,0,0,63.97,,,
11,data,BinaryMasksDataset,FALSE,64,16000,256,512,TRUE,0.4,0,0,0,0,0,0,64.72,,,
11,data,BinaryMasksDataset,FALSE,64,16000,256,512,TRUE,0.4,0,0,0,0,0,0,64.43,,,
11,data,BinaryMasksDataset,FALSE,64,16000,256,512,TRUE,0.4,0,0,0,0,0,0,64.11,,,
11,data,BinaryMasksDataset,FALSE,64,16000,256,512,TRUE,0.4,0,0,0,0,0,0,64.45,,,
11,data,BinaryMasksDataset,FALSE,64,16000,256,512,TRUE,0.4,0,0,0,0,0,0,63.84,,,
11,data,BinaryMasksDataset,FALSE,64,16000,256,512,TRUE,0.4,0,0,0,0,0,0,63.9,,,
11,data,BinaryMasksDataset,FALSE,64,16000,256,512,TRUE,0,0,0,0.2,0,0,0,64.18,64.268,0.335949732,mask
11,data,BinaryMasksDataset,FALSE,64,16000,256,512,TRUE,0,0,0,0.2,0,0,0,64.3,,,
11,data,BinaryMasksDataset,FALSE,64,16000,256,512,TRUE,0,0,0,0.2,0,0,0,64.51,,,
11,data,BinaryMasksDataset,FALSE,64,16000,256,512,TRUE,0,0,0,0.2,0,0,0,65,,,
11,data,BinaryMasksDataset,FALSE,64,16000,256,512,TRUE,0,0,0,0.2,0,0,0,64.13,,,
11,data,BinaryMasksDataset,FALSE,64,16000,256,512,TRUE,0,0,0,0.2,0,0,0,63.71,,,
11,data,BinaryMasksDataset,FALSE,64,16000,256,512,TRUE,0,0,0,0.2,0,0,0,64.01,,,
11,data,BinaryMasksDataset,FALSE,64,16000,256,512,TRUE,0,0,0,0.2,0,0,0,64.24,,,
11,data,BinaryMasksDataset,FALSE,64,16000,256,512,TRUE,0,0,0,0.2,0,0,0,64.38,,,
11,data,BinaryMasksDataset,FALSE,64,16000,256,512,TRUE,0,0,0,0.2,0,0,0,64.22,,,
11,data,BinaryMasksDataset,FALSE,64,16000,256,512,TRUE,0,0.4,0,0,0,0,0,66.1,65.394,0.54946843,shift
11,data,BinaryMasksDataset,FALSE,64,16000,256,512,TRUE,0,0.4,0,0,0,0,0,66.07,,,
11,data,BinaryMasksDataset,FALSE,64,16000,256,512,TRUE,0,0.4,0,0,0,0,0,65.32,,,
11,data,BinaryMasksDataset,FALSE,64,16000,256,512,TRUE,0,0.4,0,0,0,0,0,65.86,,,
11,data,BinaryMasksDataset,FALSE,64,16000,256,512,TRUE,0,0.4,0,0,0,0,0,65.21,,,
11,data,BinaryMasksDataset,FALSE,64,16000,256,512,TRUE,0,0.4,0,0,0,0,0,65.24,,,
11,data,BinaryMasksDataset,FALSE,64,16000,256,512,TRUE,0,0.4,0,0,0,0,0,64.23,,,
11,data,BinaryMasksDataset,FALSE,64,16000,256,512,TRUE,0,0.4,0,0,0,0,0,65.54,,,
11,data,BinaryMasksDataset,FALSE,64,16000,256,512,TRUE,0,0.4,0,0,0,0,0,65.28,,,
11,data,BinaryMasksDataset,FALSE,64,16000,256,512,TRUE,0,0.4,0,0,0,0,0,65.09,,,
1 worker root class_name use_preprocessed n_mels sr hop_length n_fft stretch loudness_ratio shift_ratio noise_ratio mask_ratio speed_amount speed_min speed_max max
2 11 data BinaryMasksDataset FALSE 64 16000 256 512 FALSE 0 0 0 0 0 0 0 64.84 64.714 0.302294926 None
3 11 data BinaryMasksDataset FALSE 64 16000 256 512 FALSE 0 0 0 0 0 0 0 64.67
4 11 data BinaryMasksDataset FALSE 64 16000 256 512 FALSE 0 0 0 0 0 0 0 64.45
5 11 data BinaryMasksDataset FALSE 64 16000 256 512 FALSE 0 0 0 0 0 0 0 64.88
6 11 data BinaryMasksDataset FALSE 64 16000 256 512 FALSE 0 0 0 0 0 0 0 64.19
7 11 data BinaryMasksDataset FALSE 64 16000 256 512 FALSE 0 0 0 0 0 0 0 65.08
8 11 data BinaryMasksDataset FALSE 64 16000 256 512 FALSE 0 0 0 0 0 0 0 64.87
9 11 data BinaryMasksDataset FALSE 64 16000 256 512 FALSE 0 0 0 0 0 0 0 64.58
10 11 data BinaryMasksDataset FALSE 64 16000 256 512 FALSE 0 0 0 0 0 0 0 64.44
11 11 data BinaryMasksDataset FALSE 64 16000 256 512 FALSE 0 0 0 0 0 0 0 65.14
12 11 data BinaryMasksDataset FALSE 64 16000 256 512 TRUE 0 0 0 0 0.4 0.7 1.7 64.6 64.784 0.403517864 Speed
13 11 data BinaryMasksDataset FALSE 64 16000 256 512 TRUE 0 0 0 0 0.4 0.7 1.7 64.95
14 11 data BinaryMasksDataset FALSE 64 16000 256 512 TRUE 0 0 0 0 0.4 0.7 1.7 64.86
15 11 data BinaryMasksDataset FALSE 64 16000 256 512 TRUE 0 0 0 0 0.4 0.7 1.7 64.69
16 11 data BinaryMasksDataset FALSE 64 16000 256 512 TRUE 0 0 0 0 0.4 0.7 1.7 64.79
17 11 data BinaryMasksDataset FALSE 64 16000 256 512 TRUE 0 0 0 0 0.4 0.7 1.7 65.1
18 11 data BinaryMasksDataset FALSE 64 16000 256 512 TRUE 0 0 0 0 0.4 0.7 1.7 63.91
19 11 data BinaryMasksDataset FALSE 64 16000 256 512 TRUE 0 0 0 0 0.4 0.7 1.7 65.4
20 11 data BinaryMasksDataset FALSE 64 16000 256 512 TRUE 0 0 0 0 0.4 0.7 1.7 64.5
21 11 data BinaryMasksDataset FALSE 64 16000 256 512 TRUE 0 0 0 0 0.4 0.7 1.7 65.04
22 11 data BinaryMasksDataset FALSE 64 16000 256 512 TRUE 0.4 0.4 0.4 0.2 0.4 0.7 1.7 65.17 65.029 0.406760918 All
23 11 data BinaryMasksDataset FALSE 64 16000 256 512 TRUE 0.4 0.4 0.4 0.2 0.4 0.7 1.7 64.34
24 11 data BinaryMasksDataset FALSE 64 16000 256 512 TRUE 0.4 0.4 0.4 0.2 0.4 0.7 1.7 65.33
25 11 data BinaryMasksDataset FALSE 64 16000 256 512 TRUE 0.4 0.4 0.4 0.2 0.4 0.7 1.7 65.27
26 11 data BinaryMasksDataset FALSE 64 16000 256 512 TRUE 0.4 0.4 0.4 0.2 0.4 0.7 1.7 65.21
27 11 data BinaryMasksDataset FALSE 64 16000 256 512 TRUE 0.4 0.4 0.4 0.2 0.4 0.7 1.7 65.29
28 11 data BinaryMasksDataset FALSE 64 16000 256 512 TRUE 0.4 0.4 0.4 0.2 0.4 0.7 1.7 65.37
29 11 data BinaryMasksDataset FALSE 64 16000 256 512 TRUE 0.4 0.4 0.4 0.2 0.4 0.7 1.7 65.09
30 11 data BinaryMasksDataset FALSE 64 16000 256 512 TRUE 0.4 0.4 0.4 0.2 0.4 0.7 1.7 64.98
31 11 data BinaryMasksDataset FALSE 64 16000 256 512 TRUE 0.4 0.4 0.4 0.2 0.4 0.7 1.7 64.24
32 11 data BinaryMasksDataset FALSE 64 16000 256 512 TRUE 0 0 0.4 0 0 0 0 63.77 63.618 0.224192378 noise
33 11 data BinaryMasksDataset FALSE 64 16000 256 512 TRUE 0 0 0.4 0 0 0 0 63.65
34 11 data BinaryMasksDataset FALSE 64 16000 256 512 TRUE 0 0 0.4 0 0 0 0 63.57
35 11 data BinaryMasksDataset FALSE 64 16000 256 512 TRUE 0 0 0.4 0 0 0 0 63.37
36 11 data BinaryMasksDataset FALSE 64 16000 256 512 TRUE 0 0 0.4 0 0 0 0 63.98
37 11 data BinaryMasksDataset FALSE 64 16000 256 512 TRUE 0 0 0.4 0 0 0 0 63.19
38 11 data BinaryMasksDataset FALSE 64 16000 256 512 TRUE 0 0 0.4 0 0 0 0 63.61
39 11 data BinaryMasksDataset FALSE 64 16000 256 512 TRUE 0 0 0.4 0 0 0 0 63.77
40 11 data BinaryMasksDataset FALSE 64 16000 256 512 TRUE 0 0 0.4 0 0 0 0 63.52
41 11 data BinaryMasksDataset FALSE 64 16000 256 512 TRUE 0 0 0.4 0 0 0 0 63.75
42 11 data BinaryMasksDataset FALSE 64 16000 256 512 TRUE 0.4 0 0 0 0 0 0 64.77 64.305 0.435488232 loudness
43 11 data BinaryMasksDataset FALSE 64 16000 256 512 TRUE 0.4 0 0 0 0 0 0 65.03
44 11 data BinaryMasksDataset FALSE 64 16000 256 512 TRUE 0.4 0 0 0 0 0 0 63.83
45 11 data BinaryMasksDataset FALSE 64 16000 256 512 TRUE 0.4 0 0 0 0 0 0 63.97
46 11 data BinaryMasksDataset FALSE 64 16000 256 512 TRUE 0.4 0 0 0 0 0 0 64.72
47 11 data BinaryMasksDataset FALSE 64 16000 256 512 TRUE 0.4 0 0 0 0 0 0 64.43
48 11 data BinaryMasksDataset FALSE 64 16000 256 512 TRUE 0.4 0 0 0 0 0 0 64.11
49 11 data BinaryMasksDataset FALSE 64 16000 256 512 TRUE 0.4 0 0 0 0 0 0 64.45
50 11 data BinaryMasksDataset FALSE 64 16000 256 512 TRUE 0.4 0 0 0 0 0 0 63.84
51 11 data BinaryMasksDataset FALSE 64 16000 256 512 TRUE 0.4 0 0 0 0 0 0 63.9
52 11 data BinaryMasksDataset FALSE 64 16000 256 512 TRUE 0 0 0 0.2 0 0 0 64.18 64.268 0.335949732 mask
53 11 data BinaryMasksDataset FALSE 64 16000 256 512 TRUE 0 0 0 0.2 0 0 0 64.3
54 11 data BinaryMasksDataset FALSE 64 16000 256 512 TRUE 0 0 0 0.2 0 0 0 64.51
55 11 data BinaryMasksDataset FALSE 64 16000 256 512 TRUE 0 0 0 0.2 0 0 0 65
56 11 data BinaryMasksDataset FALSE 64 16000 256 512 TRUE 0 0 0 0.2 0 0 0 64.13
57 11 data BinaryMasksDataset FALSE 64 16000 256 512 TRUE 0 0 0 0.2 0 0 0 63.71
58 11 data BinaryMasksDataset FALSE 64 16000 256 512 TRUE 0 0 0 0.2 0 0 0 64.01
59 11 data BinaryMasksDataset FALSE 64 16000 256 512 TRUE 0 0 0 0.2 0 0 0 64.24
60 11 data BinaryMasksDataset FALSE 64 16000 256 512 TRUE 0 0 0 0.2 0 0 0 64.38
61 11 data BinaryMasksDataset FALSE 64 16000 256 512 TRUE 0 0 0 0.2 0 0 0 64.22
62 11 data BinaryMasksDataset FALSE 64 16000 256 512 TRUE 0 0.4 0 0 0 0 0 66.1 65.394 0.54946843 shift
63 11 data BinaryMasksDataset FALSE 64 16000 256 512 TRUE 0 0.4 0 0 0 0 0 66.07
64 11 data BinaryMasksDataset FALSE 64 16000 256 512 TRUE 0 0.4 0 0 0 0 0 65.32
65 11 data BinaryMasksDataset FALSE 64 16000 256 512 TRUE 0 0.4 0 0 0 0 0 65.86
66 11 data BinaryMasksDataset FALSE 64 16000 256 512 TRUE 0 0.4 0 0 0 0 0 65.21
67 11 data BinaryMasksDataset FALSE 64 16000 256 512 TRUE 0 0.4 0 0 0 0 0 65.24
68 11 data BinaryMasksDataset FALSE 64 16000 256 512 TRUE 0 0.4 0 0 0 0 0 64.23
69 11 data BinaryMasksDataset FALSE 64 16000 256 512 TRUE 0 0.4 0 0 0 0 0 65.54
70 11 data BinaryMasksDataset FALSE 64 16000 256 512 TRUE 0 0.4 0 0 0 0 0 65.28
71 11 data BinaryMasksDataset FALSE 64 16000 256 512 TRUE 0 0.4 0 0 0 0 0 65.09

View File

@ -0,0 +1,71 @@
worker,root,class_name,use_preprocessed,n_mels,sr,hop_length,n_fft,stretch,loudness_ratio,shift_ratio,noise_ratio,mask_ratio,speed_amount,speed_min,speed_max,max,,,
11,data,BinaryMasksDataset,FALSE,64,16000,256,512,TRUE,0,0,0.4,0,0,0,0,63.3,63.38,0.406639343,noise
11,data,BinaryMasksDataset,FALSE,64,16000,256,512,TRUE,0,0,0.4,0,0,0,0,63.27,,,
11,data,BinaryMasksDataset,FALSE,64,16000,256,512,TRUE,0,0,0.4,0,0,0,0,63.54,,,
11,data,BinaryMasksDataset,FALSE,64,16000,256,512,TRUE,0,0,0.4,0,0,0,0,62.69,,,
11,data,BinaryMasksDataset,FALSE,64,16000,256,512,TRUE,0,0,0.4,0,0,0,0,64.05,,,
11,data,BinaryMasksDataset,FALSE,64,16000,256,512,TRUE,0,0,0.4,0,0,0,0,63.71,,,
11,data,BinaryMasksDataset,FALSE,64,16000,256,512,TRUE,0,0,0.4,0,0,0,0,62.8,,,
11,data,BinaryMasksDataset,FALSE,64,16000,256,512,TRUE,0,0,0.4,0,0,0,0,63.55,,,
11,data,BinaryMasksDataset,FALSE,64,16000,256,512,TRUE,0,0,0.4,0,0,0,0,63.58,,,
11,data,BinaryMasksDataset,FALSE,64,16000,256,512,TRUE,0,0,0.4,0,0,0,0,63.31,,,
11,data,BinaryMasksDataset,FALSE,64,16000,256,512,TRUE,0,0.4,0,0,0,0,0,63.6,64.377,0.775901626,shift
11,data,BinaryMasksDataset,FALSE,64,16000,256,512,TRUE,0,0.4,0,0,0,0,0,65.57,,,
11,data,BinaryMasksDataset,FALSE,64,16000,256,512,TRUE,0,0.4,0,0,0,0,0,65.39,,,
11,data,BinaryMasksDataset,FALSE,64,16000,256,512,TRUE,0,0.4,0,0,0,0,0,64.55,,,
11,data,BinaryMasksDataset,FALSE,64,16000,256,512,TRUE,0,0.4,0,0,0,0,0,63.87,,,
11,data,BinaryMasksDataset,FALSE,64,16000,256,512,TRUE,0,0.4,0,0,0,0,0,64.15,,,
11,data,BinaryMasksDataset,FALSE,64,16000,256,512,TRUE,0,0.4,0,0,0,0,0,63.76,,,
11,data,BinaryMasksDataset,FALSE,64,16000,256,512,TRUE,0,0.4,0,0,0,0,0,64.17,,,
11,data,BinaryMasksDataset,FALSE,64,16000,256,512,TRUE,0,0.4,0,0,0,0,0,63.46,,,
11,data,BinaryMasksDataset,FALSE,64,16000,256,512,TRUE,0,0.4,0,0,0,0,0,65.25,,,
11,data,BinaryMasksDataset,FALSE,64,16000,256,512,TRUE,0,0,0,0,0.4,0.7,1.7,64.62,64.069,0.766571733,speed
11,data,BinaryMasksDataset,FALSE,64,16000,256,512,TRUE,0,0,0,0,0.4,0.7,1.7,63.32,,,
11,data,BinaryMasksDataset,FALSE,64,16000,256,512,TRUE,0,0,0,0,0.4,0.7,1.7,62.61,,,
11,data,BinaryMasksDataset,FALSE,64,16000,256,512,TRUE,0,0,0,0,0.4,0.7,1.7,65.44,,,
11,data,BinaryMasksDataset,FALSE,64,16000,256,512,TRUE,0,0,0,0,0.4,0.7,1.7,64.48,,,
11,data,BinaryMasksDataset,FALSE,64,16000,256,512,TRUE,0,0,0,0,0.4,0.7,1.7,64.26,,,
11,data,BinaryMasksDataset,FALSE,64,16000,256,512,TRUE,0,0,0,0,0.4,0.7,1.7,64.05,,,
11,data,BinaryMasksDataset,FALSE,64,16000,256,512,TRUE,0,0,0,0,0.4,0.7,1.7,63.66,,,
11,data,BinaryMasksDataset,FALSE,64,16000,256,512,TRUE,0,0,0,0,0.4,0.7,1.7,63.99,,,
11,data,BinaryMasksDataset,FALSE,64,16000,256,512,TRUE,0,0,0,0,0.4,0.7,1.7,64.26,,,
11,data,BinaryMasksDataset,FALSE,64,16000,256,512,TRUE,0,0,0,0.2,0,0,0,63.75,64.304,0.449102809,mask
11,data,BinaryMasksDataset,FALSE,64,16000,256,512,TRUE,0,0,0,0.2,0,0,0,64.02,,,
11,data,BinaryMasksDataset,FALSE,64,16000,256,512,TRUE,0,0,0,0.2,0,0,0,64.31,,,
11,data,BinaryMasksDataset,FALSE,64,16000,256,512,TRUE,0,0,0,0.2,0,0,0,64.54,,,
11,data,BinaryMasksDataset,FALSE,64,16000,256,512,TRUE,0,0,0,0.2,0,0,0,64.23,,,
11,data,BinaryMasksDataset,FALSE,64,16000,256,512,TRUE,0,0,0,0.2,0,0,0,64.52,,,
11,data,BinaryMasksDataset,FALSE,64,16000,256,512,TRUE,0,0,0,0.2,0,0,0,64.25,,,
11,data,BinaryMasksDataset,FALSE,64,16000,256,512,TRUE,0,0,0,0.2,0,0,0,63.79,,,
11,data,BinaryMasksDataset,FALSE,64,16000,256,512,TRUE,0,0,0,0.2,0,0,0,65.33,,,
11,data,BinaryMasksDataset,FALSE,64,16000,256,512,TRUE,0,0,0,0.2,0,0,0,64.3,,,
11,data,BinaryMasksDataset,FALSE,64,16000,256,512,FALSE,0,0,0,0,0,0,0,64.64,64.53,0.53264539,none
11,data,BinaryMasksDataset,FALSE,64,16000,256,512,FALSE,0,0,0,0,0,0,0,64.19,,,
11,data,BinaryMasksDataset,FALSE,64,16000,256,512,FALSE,0,0,0,0,0,0,0,65.2,,,
11,data,BinaryMasksDataset,FALSE,64,16000,256,512,FALSE,0,0,0,0,0,0,0,64.4,,,
11,data,BinaryMasksDataset,FALSE,64,16000,256,512,FALSE,0,0,0,0,0,0,0,63.88,,,
11,data,BinaryMasksDataset,FALSE,64,16000,256,512,FALSE,0,0,0,0,0,0,0,64.67,,,
11,data,BinaryMasksDataset,FALSE,64,16000,256,512,FALSE,0,0,0,0,0,0,0,63.85,,,
11,data,BinaryMasksDataset,FALSE,64,16000,256,512,FALSE,0,0,0,0,0,0,0,64.25,,,
11,data,BinaryMasksDataset,FALSE,64,16000,256,512,FALSE,0,0,0,0,0,0,0,65.5,,,
11,data,BinaryMasksDataset,FALSE,64,16000,256,512,FALSE,0,0,0,0,0,0,0,64.72,,,
11,data,BinaryMasksDataset,FALSE,64,16000,256,512,TRUE,0.4,0,0,0,0,0,0,63.84,64.14,0.372618363,loudness
11,data,BinaryMasksDataset,FALSE,64,16000,256,512,TRUE,0.4,0,0,0,0,0,0,63.5,,,
11,data,BinaryMasksDataset,FALSE,64,16000,256,512,TRUE,0.4,0,0,0,0,0,0,64,,,
11,data,BinaryMasksDataset,FALSE,64,16000,256,512,TRUE,0.4,0,0,0,0,0,0,64.38,,,
11,data,BinaryMasksDataset,FALSE,64,16000,256,512,TRUE,0.4,0,0,0,0,0,0,64.37,,,
11,data,BinaryMasksDataset,FALSE,64,16000,256,512,TRUE,0.4,0,0,0,0,0,0,64.9,,,
11,data,BinaryMasksDataset,FALSE,64,16000,256,512,TRUE,0.4,0,0,0,0,0,0,64.11,,,
11,data,BinaryMasksDataset,FALSE,64,16000,256,512,TRUE,0.4,0,0,0,0,0,0,64.24,,,
11,data,BinaryMasksDataset,FALSE,64,16000,256,512,TRUE,0.4,0,0,0,0,0,0,63.97,,,
11,data,BinaryMasksDataset,FALSE,64,16000,256,512,TRUE,0.4,0,0,0,0,0,0,64.09,,,
11,data,BinaryMasksDataset,FALSE,64,16000,256,512,TRUE,0.4,0.4,0.4,0.2,0.4,0.7,1.7,64.32,64.118,0.417047826,all
11,data,BinaryMasksDataset,FALSE,64,16000,256,512,TRUE,0.4,0.4,0.4,0.2,0.4,0.7,1.7,64.58,,,
11,data,BinaryMasksDataset,FALSE,64,16000,256,512,TRUE,0.4,0.4,0.4,0.2,0.4,0.7,1.7,63.55,,,
11,data,BinaryMasksDataset,FALSE,64,16000,256,512,TRUE,0.4,0.4,0.4,0.2,0.4,0.7,1.7,64.54,,,
11,data,BinaryMasksDataset,FALSE,64,16000,256,512,TRUE,0.4,0.4,0.4,0.2,0.4,0.7,1.7,64.04,,,
11,data,BinaryMasksDataset,FALSE,64,16000,256,512,TRUE,0.4,0.4,0.4,0.2,0.4,0.7,1.7,63.64,,,
11,data,BinaryMasksDataset,FALSE,64,16000,256,512,TRUE,0.4,0.4,0.4,0.2,0.4,0.7,1.7,63.48,,,
11,data,BinaryMasksDataset,FALSE,64,16000,256,512,TRUE,0.4,0.4,0.4,0.2,0.4,0.7,1.7,64.41,,,
11,data,BinaryMasksDataset,FALSE,64,16000,256,512,TRUE,0.4,0.4,0.4,0.2,0.4,0.7,1.7,64.24,,,
11,data,BinaryMasksDataset,FALSE,64,16000,256,512,TRUE,0.4,0.4,0.4,0.2,0.4,0.7,1.7,64.38,,,
1 worker root class_name use_preprocessed n_mels sr hop_length n_fft stretch loudness_ratio shift_ratio noise_ratio mask_ratio speed_amount speed_min speed_max max
2 11 data BinaryMasksDataset FALSE 64 16000 256 512 TRUE 0 0 0.4 0 0 0 0 63.3 63.38 0.406639343 noise
3 11 data BinaryMasksDataset FALSE 64 16000 256 512 TRUE 0 0 0.4 0 0 0 0 63.27
4 11 data BinaryMasksDataset FALSE 64 16000 256 512 TRUE 0 0 0.4 0 0 0 0 63.54
5 11 data BinaryMasksDataset FALSE 64 16000 256 512 TRUE 0 0 0.4 0 0 0 0 62.69
6 11 data BinaryMasksDataset FALSE 64 16000 256 512 TRUE 0 0 0.4 0 0 0 0 64.05
7 11 data BinaryMasksDataset FALSE 64 16000 256 512 TRUE 0 0 0.4 0 0 0 0 63.71
8 11 data BinaryMasksDataset FALSE 64 16000 256 512 TRUE 0 0 0.4 0 0 0 0 62.8
9 11 data BinaryMasksDataset FALSE 64 16000 256 512 TRUE 0 0 0.4 0 0 0 0 63.55
10 11 data BinaryMasksDataset FALSE 64 16000 256 512 TRUE 0 0 0.4 0 0 0 0 63.58
11 11 data BinaryMasksDataset FALSE 64 16000 256 512 TRUE 0 0 0.4 0 0 0 0 63.31
12 11 data BinaryMasksDataset FALSE 64 16000 256 512 TRUE 0 0.4 0 0 0 0 0 63.6 64.377 0.775901626 shift
13 11 data BinaryMasksDataset FALSE 64 16000 256 512 TRUE 0 0.4 0 0 0 0 0 65.57
14 11 data BinaryMasksDataset FALSE 64 16000 256 512 TRUE 0 0.4 0 0 0 0 0 65.39
15 11 data BinaryMasksDataset FALSE 64 16000 256 512 TRUE 0 0.4 0 0 0 0 0 64.55
16 11 data BinaryMasksDataset FALSE 64 16000 256 512 TRUE 0 0.4 0 0 0 0 0 63.87
17 11 data BinaryMasksDataset FALSE 64 16000 256 512 TRUE 0 0.4 0 0 0 0 0 64.15
18 11 data BinaryMasksDataset FALSE 64 16000 256 512 TRUE 0 0.4 0 0 0 0 0 63.76
19 11 data BinaryMasksDataset FALSE 64 16000 256 512 TRUE 0 0.4 0 0 0 0 0 64.17
20 11 data BinaryMasksDataset FALSE 64 16000 256 512 TRUE 0 0.4 0 0 0 0 0 63.46
21 11 data BinaryMasksDataset FALSE 64 16000 256 512 TRUE 0 0.4 0 0 0 0 0 65.25
22 11 data BinaryMasksDataset FALSE 64 16000 256 512 TRUE 0 0 0 0 0.4 0.7 1.7 64.62 64.069 0.766571733 speed
23 11 data BinaryMasksDataset FALSE 64 16000 256 512 TRUE 0 0 0 0 0.4 0.7 1.7 63.32
24 11 data BinaryMasksDataset FALSE 64 16000 256 512 TRUE 0 0 0 0 0.4 0.7 1.7 62.61
25 11 data BinaryMasksDataset FALSE 64 16000 256 512 TRUE 0 0 0 0 0.4 0.7 1.7 65.44
26 11 data BinaryMasksDataset FALSE 64 16000 256 512 TRUE 0 0 0 0 0.4 0.7 1.7 64.48
27 11 data BinaryMasksDataset FALSE 64 16000 256 512 TRUE 0 0 0 0 0.4 0.7 1.7 64.26
28 11 data BinaryMasksDataset FALSE 64 16000 256 512 TRUE 0 0 0 0 0.4 0.7 1.7 64.05
29 11 data BinaryMasksDataset FALSE 64 16000 256 512 TRUE 0 0 0 0 0.4 0.7 1.7 63.66
30 11 data BinaryMasksDataset FALSE 64 16000 256 512 TRUE 0 0 0 0 0.4 0.7 1.7 63.99
31 11 data BinaryMasksDataset FALSE 64 16000 256 512 TRUE 0 0 0 0 0.4 0.7 1.7 64.26
32 11 data BinaryMasksDataset FALSE 64 16000 256 512 TRUE 0 0 0 0.2 0 0 0 63.75 64.304 0.449102809 mask
33 11 data BinaryMasksDataset FALSE 64 16000 256 512 TRUE 0 0 0 0.2 0 0 0 64.02
34 11 data BinaryMasksDataset FALSE 64 16000 256 512 TRUE 0 0 0 0.2 0 0 0 64.31
35 11 data BinaryMasksDataset FALSE 64 16000 256 512 TRUE 0 0 0 0.2 0 0 0 64.54
36 11 data BinaryMasksDataset FALSE 64 16000 256 512 TRUE 0 0 0 0.2 0 0 0 64.23
37 11 data BinaryMasksDataset FALSE 64 16000 256 512 TRUE 0 0 0 0.2 0 0 0 64.52
38 11 data BinaryMasksDataset FALSE 64 16000 256 512 TRUE 0 0 0 0.2 0 0 0 64.25
39 11 data BinaryMasksDataset FALSE 64 16000 256 512 TRUE 0 0 0 0.2 0 0 0 63.79
40 11 data BinaryMasksDataset FALSE 64 16000 256 512 TRUE 0 0 0 0.2 0 0 0 65.33
41 11 data BinaryMasksDataset FALSE 64 16000 256 512 TRUE 0 0 0 0.2 0 0 0 64.3
42 11 data BinaryMasksDataset FALSE 64 16000 256 512 FALSE 0 0 0 0 0 0 0 64.64 64.53 0.53264539 none
43 11 data BinaryMasksDataset FALSE 64 16000 256 512 FALSE 0 0 0 0 0 0 0 64.19
44 11 data BinaryMasksDataset FALSE 64 16000 256 512 FALSE 0 0 0 0 0 0 0 65.2
45 11 data BinaryMasksDataset FALSE 64 16000 256 512 FALSE 0 0 0 0 0 0 0 64.4
46 11 data BinaryMasksDataset FALSE 64 16000 256 512 FALSE 0 0 0 0 0 0 0 63.88
47 11 data BinaryMasksDataset FALSE 64 16000 256 512 FALSE 0 0 0 0 0 0 0 64.67
48 11 data BinaryMasksDataset FALSE 64 16000 256 512 FALSE 0 0 0 0 0 0 0 63.85
49 11 data BinaryMasksDataset FALSE 64 16000 256 512 FALSE 0 0 0 0 0 0 0 64.25
50 11 data BinaryMasksDataset FALSE 64 16000 256 512 FALSE 0 0 0 0 0 0 0 65.5
51 11 data BinaryMasksDataset FALSE 64 16000 256 512 FALSE 0 0 0 0 0 0 0 64.72
52 11 data BinaryMasksDataset FALSE 64 16000 256 512 TRUE 0.4 0 0 0 0 0 0 63.84 64.14 0.372618363 loudness
53 11 data BinaryMasksDataset FALSE 64 16000 256 512 TRUE 0.4 0 0 0 0 0 0 63.5
54 11 data BinaryMasksDataset FALSE 64 16000 256 512 TRUE 0.4 0 0 0 0 0 0 64
55 11 data BinaryMasksDataset FALSE 64 16000 256 512 TRUE 0.4 0 0 0 0 0 0 64.38
56 11 data BinaryMasksDataset FALSE 64 16000 256 512 TRUE 0.4 0 0 0 0 0 0 64.37
57 11 data BinaryMasksDataset FALSE 64 16000 256 512 TRUE 0.4 0 0 0 0 0 0 64.9
58 11 data BinaryMasksDataset FALSE 64 16000 256 512 TRUE 0.4 0 0 0 0 0 0 64.11
59 11 data BinaryMasksDataset FALSE 64 16000 256 512 TRUE 0.4 0 0 0 0 0 0 64.24
60 11 data BinaryMasksDataset FALSE 64 16000 256 512 TRUE 0.4 0 0 0 0 0 0 63.97
61 11 data BinaryMasksDataset FALSE 64 16000 256 512 TRUE 0.4 0 0 0 0 0 0 64.09
62 11 data BinaryMasksDataset FALSE 64 16000 256 512 TRUE 0.4 0.4 0.4 0.2 0.4 0.7 1.7 64.32 64.118 0.417047826 all
63 11 data BinaryMasksDataset FALSE 64 16000 256 512 TRUE 0.4 0.4 0.4 0.2 0.4 0.7 1.7 64.58
64 11 data BinaryMasksDataset FALSE 64 16000 256 512 TRUE 0.4 0.4 0.4 0.2 0.4 0.7 1.7 63.55
65 11 data BinaryMasksDataset FALSE 64 16000 256 512 TRUE 0.4 0.4 0.4 0.2 0.4 0.7 1.7 64.54
66 11 data BinaryMasksDataset FALSE 64 16000 256 512 TRUE 0.4 0.4 0.4 0.2 0.4 0.7 1.7 64.04
67 11 data BinaryMasksDataset FALSE 64 16000 256 512 TRUE 0.4 0.4 0.4 0.2 0.4 0.7 1.7 63.64
68 11 data BinaryMasksDataset FALSE 64 16000 256 512 TRUE 0.4 0.4 0.4 0.2 0.4 0.7 1.7 63.48
69 11 data BinaryMasksDataset FALSE 64 16000 256 512 TRUE 0.4 0.4 0.4 0.2 0.4 0.7 1.7 64.41
70 11 data BinaryMasksDataset FALSE 64 16000 256 512 TRUE 0.4 0.4 0.4 0.2 0.4 0.7 1.7 64.24
71 11 data BinaryMasksDataset FALSE 64 16000 256 512 TRUE 0.4 0.4 0.4 0.2 0.4 0.7 1.7 64.38

BIN
output/shift.png Normal file

Binary file not shown.

After

Width:  |  Height:  |  Size: 18 KiB

BIN
output/speed.png Normal file

Binary file not shown.

After

Width:  |  Height:  |  Size: 18 KiB

45
repair_outputs.py Normal file
View File

@ -0,0 +1,45 @@
import csv
from pathlib import Path
import shutil
if __name__ == '__main__':
for old_out_file in (Path() / 'output').rglob('*_test_out.csv'):
old_out_file.unlink()
for new_out_file in (Path() / 'output').rglob('*_test_out_repair.csv'):
shutil.move(str(new_out_file), str(new_out_file).replace('_test_out_repair', '_test_out'))
exit()
'''
with old_out_file.open('r') as old_f:
predictions = []
file_names = []
idx = 1
zeros = '00000'
_ = old_f.readline()
for row in old_f:
split_row = row.split(',')
file_names.append(f'test_{zeros[:-len(str(idx))]}{idx}.wav')
predictions.append(split_row[-1].strip()
.replace('"', '').replace('(', '').replace(')', '').replace("'", '')
)
idx += 1
try:
(old_out_file.parent / f'{old_out_file.name}_repair').unlink()
except FileNotFoundError:
pass
with (old_out_file.parent / f'{old_out_file.name[:-4]}_repair.csv').open('w') as new_f:
headers = ['file_name', 'prediction']
writer = csv.DictWriter(new_f, delimiter=',', lineterminator='\n', fieldnames=headers)
writer.writeheader() # write a header
writer.writerows([dict(file_name=file_name, prediction=prediction)
for file_name, prediction in zip(file_names, predictions)]
)
'''
pass

View File

@ -162,7 +162,7 @@ class DatasetMixin:
hop_length=self.params.hop_length)
# Utility
normalize = NormalizeLocal()
utility_transforms = Compose([NormalizeLocal(), ToTensor()])
# Data Augmentations
mel_augmentations = Compose([
@ -172,7 +172,7 @@ class DatasetMixin:
ShiftTime(0.4),
MaskAug(0.2),
], p=0.6),
normalize])
utility_transforms])
# Datasets
Dataset = namedtuple('Datasets', 'train_dataset val_dataset test_dataset')
@ -187,13 +187,13 @@ class DatasetMixin:
fold=9,
reset=self.params.reset,
mel_kwargs=mel_kwargs,
mel_augmentations=normalize),
mel_augmentations=utility_transforms),
test_dataset=self.dataset_class(data_root=self.params.root, # TEST DATASET
setting=V.DATA_OPTION_test,
fold=10,
reset=self.params.reset,
mel_kwargs=mel_kwargs,
mel_augmentations=normalize),
mel_augmentations=utility_transforms),
)
if dataset.train_dataset.task_type == V.TASK_OPTION_binary: