requirements

This commit is contained in:
Si11ium 2020-05-14 23:08:36 +02:00
parent 407df15bbf
commit e7d1a4895a
9 changed files with 52 additions and 38 deletions

View File

@ -30,12 +30,12 @@ main_arg_parser.add_argument("--data_n_fft", type=int, default=512, help="")
main_arg_parser.add_argument("--data_mixup", type=strtobool, default=False, help="")
# Transformation Parameters
main_arg_parser.add_argument("--data_loudness_ratio", type=float, default=0.4, help="")
main_arg_parser.add_argument("--data_shift_ratio", type=float, default=0.3, help="")
main_arg_parser.add_argument("--data_noise_ratio", type=float, default=0.4, help="")
main_arg_parser.add_argument("--data_mask_ratio", type=float, default=0.2, help="")
main_arg_parser.add_argument("--data_speed_ratio", type=float, default=0.3, help="")
main_arg_parser.add_argument("--data_speed_factor", type=float, default=0.7, help="")
main_arg_parser.add_argument("--data_loudness_ratio", type=float, default=0, help="") # 0.4
main_arg_parser.add_argument("--data_shift_ratio", type=float, default=0, help="") # 0.3
main_arg_parser.add_argument("--data_noise_ratio", type=float, default=0, help="") # 0.4
main_arg_parser.add_argument("--data_mask_ratio", type=float, default=0.2, help="") # 0.2
main_arg_parser.add_argument("--data_speed_ratio", type=float, default=0.3, help="") # 0.3
main_arg_parser.add_argument("--data_speed_factor", type=float, default=0.7, help="") # 0.7
# Training Parameters
main_arg_parser.add_argument("--train_outpath", type=str, default="output", help="")
@ -49,8 +49,8 @@ main_arg_parser.add_argument("--train_lr", type=float, default=1e-4, help="")
main_arg_parser.add_argument("--train_num_sanity_val_steps", type=int, default=0, help="")
# Model Parameters
main_arg_parser.add_argument("--model_type", type=str, default="CC", help="")
main_arg_parser.add_argument("--model_secondary_type", type=str, default="CC", help="")
main_arg_parser.add_argument("--model_type", type=str, default="BCMC", help="")
main_arg_parser.add_argument("--model_secondary_type", type=str, default="BCMC", help="")
main_arg_parser.add_argument("--model_weight_init", type=str, default="xavier_normal_", help="")
main_arg_parser.add_argument("--model_activation", type=str, default="leaky_relu", help="")
main_arg_parser.add_argument("--model_filters", type=str, default="[32, 64, 128, 64]", help="")

View File

@ -47,9 +47,10 @@ class BinaryMasksDataset(Dataset):
filename, label = row.strip().split(',')
labeldict[filename] = self._to_label[label.lower()] if not self.setting == 'test' else filename
if self.stretch and self.setting == V.DATA_OPTIONS.train:
labeldict.update({f'X_{key}': val for key, val in labeldict.items()})
labeldict.update({f'X_X_{key}': val for key, val in labeldict.items()})
labeldict.update({f'X_X_X_{key}': val for key, val in labeldict.items()})
additional_dict = ({f'X_{key}': val for key, val in labeldict.items()})
additional_dict.update({f'X_X_{key}': val for key, val in labeldict.items()})
additional_dict.update({f'X_X_X_{key}': val for key, val in labeldict.items()})
labeldict.update(additional_dict)
return labeldict
def __len__(self):

View File

@ -5,7 +5,7 @@ from tqdm import tqdm
import variables as V
from torch.utils.data import DataLoader, Dataset
from torchvision.transforms import Compose
from torchvision.transforms import Compose, RandomApply
from ml_lib.audio_toolset.audio_io import AudioToMel, NormalizeLocal, MelToImage
@ -13,6 +13,7 @@ from ml_lib.audio_toolset.audio_io import AudioToMel, NormalizeLocal, MelToImage
# =============================================================================
# Transforms
from ml_lib.audio_toolset.mel_augmentation import NoiseInjection, LoudnessManipulator, ShiftTime, MaskAug
from ml_lib.utils.logging import Logger
from ml_lib.utils.model_io import SavedLightningModels
from ml_lib.utils.transforms import ToTensor
@ -28,8 +29,18 @@ def prepare_dataloader(config_obj):
AudioToMel(sr=config_obj.data.sr, n_mels=config_obj.data.n_mels, n_fft=config_obj.data.n_fft,
hop_length=config_obj.data.hop_length), MelToImage()])
transforms = Compose([NormalizeLocal(), ToTensor()])
aug_transforms = Compose([
RandomApply([
NoiseInjection(config_obj.data.noise_ratio),
LoudnessManipulator(config_obj.data.loudness_ratio),
ShiftTime(config_obj.data.shift_ratio),
MaskAug(config_obj.data.mask_ratio),
], p=0.6),
# Utility
NormalizeLocal(), ToTensor()
])
dataset: Dataset = BinaryMasksDataset(config_obj.data.root, setting='test',
dataset: Dataset = BinaryMasksDataset(config_obj.data.root, setting='train',
mel_transforms=mel_transforms, transforms=transforms
)
# noinspection PyTypeChecker
@ -49,9 +60,9 @@ def restore_logger_and_model(config_obj):
if __name__ == '__main__':
outpath = Path('output')
model_type = 'BandwiseConvMultiheadClassifier'
parameters = 'BCMC_9c70168a5711c269b33701f1650adfb9/'
version = 'version_1'
model_type = 'CC'
parameters = 'CC_213adb16e46592c5a405abfbd693835e/'
version = 'version_41'
config_filename = 'config.ini'
inference_out = 'manual_test_out.csv'

View File

@ -5,11 +5,11 @@ from torch.nn import ModuleList
from ml_lib.modules.blocks import ConvModule, LinearModule
from ml_lib.modules.utils import (LightningBaseModule, HorizontalSplitter, HorizontalMerger)
from util.module_mixins import (BaseOptimizerMixin, BaseTrainMixin, BaseValMixin, BinaryMaskDatasetFunction,
from util.module_mixins import (BaseOptimizerMixin, BaseTrainMixin, BaseValMixin, BinaryMaskDatasetMixin,
BaseDataloadersMixin)
class BandwiseConvClassifier(BinaryMaskDatasetFunction,
class BandwiseConvClassifier(BinaryMaskDatasetMixin,
BaseDataloadersMixin,
BaseTrainMixin,
BaseValMixin,

View File

@ -6,11 +6,11 @@ from torch.nn import ModuleList
from ml_lib.modules.blocks import ConvModule, LinearModule
from ml_lib.modules.utils import (LightningBaseModule, Flatten, HorizontalSplitter)
from util.module_mixins import (BaseOptimizerMixin, BaseTrainMixin, BaseValMixin, BinaryMaskDatasetFunction,
from util.module_mixins import (BaseOptimizerMixin, BaseTrainMixin, BaseValMixin, BinaryMaskDatasetMixin,
BaseDataloadersMixin)
class BandwiseConvMultiheadClassifier(BinaryMaskDatasetFunction,
class BandwiseConvMultiheadClassifier(BinaryMaskDatasetMixin,
BaseDataloadersMixin,
BaseTrainMixin,
BaseValMixin,
@ -42,7 +42,7 @@ class BandwiseConvMultiheadClassifier(BinaryMaskDatasetFunction,
return_dict = {f'band_{band_idx}_val_loss': band_y for band_idx, band_y in enumerate(bands_y_losses)}
last_bce_loss = self.bce_loss(y, batch_y)
return_dict.update(last_bce_loss=last_bce_loss)
return_dict.update(last_val_bce_loss=last_bce_loss)
bands_y_losses.append(last_bce_loss)
combined_loss = torch.stack(bands_y_losses).mean()
@ -76,7 +76,7 @@ class BandwiseConvMultiheadClassifier(BinaryMaskDatasetFunction,
last_shape = self.split.shape
conv_list = ModuleList()
for filters in self.conv_filters:
conv_list.append(ConvModule(last_shape, filters, (k,k), conv_stride=(1, 1),
conv_list.append(ConvModule(last_shape, filters, (k, k), conv_stride=(2, 2), conv_padding=2,
**self.params.module_kwargs))
last_shape = conv_list[-1].shape
# self.conv_list.append(ConvModule(last_shape, 1, 1, conv_stride=1, **self.params.module_kwargs))
@ -84,10 +84,10 @@ class BandwiseConvMultiheadClassifier(BinaryMaskDatasetFunction,
self.band_list.append(conv_list)
self.bandwise_deep_list_1 = ModuleList([
LinearModule(self.band_list[0][-1].shape, self.params.lat_dim * 4, **self.params.module_kwargs)
LinearModule(self.band_list[0][-1].shape, self.params.lat_dim, **self.params.module_kwargs)
for _ in range(self.n_band_sections)])
self.bandwise_deep_list_2 = ModuleList([
LinearModule(self.params.lat_dim * 4, self.params.lat_dim * 2, **self.params.module_kwargs)
LinearModule(self.params.lat_dim, self.params.lat_dim * 2, **self.params.module_kwargs)
for _ in range(self.n_band_sections)])
self.bandwise_latent_list = ModuleList([
LinearModule(self.params.lat_dim * 2, self.params.lat_dim, **self.params.module_kwargs)
@ -96,7 +96,7 @@ class BandwiseConvMultiheadClassifier(BinaryMaskDatasetFunction,
LinearModule(self.params.lat_dim, 1, bias=self.params.bias, activation=nn.Sigmoid)
for _ in range(self.n_band_sections)])
self.full_1 = LinearModule(self.n_band_sections, self.params.lat_dim * 4, **self.params.module_kwargs)
self.full_1 = LinearModule(self.n_band_sections, self.params.lat_dim, **self.params.module_kwargs)
self.full_2 = LinearModule(self.full_1.shape, self.params.lat_dim * 2, **self.params.module_kwargs)
self.full_3 = LinearModule(self.full_2.shape, self.params.lat_dim, **self.params.module_kwargs)
self.full_out = LinearModule(self.full_3.shape, 1, bias=self.params.bias, activation=nn.Sigmoid)

View File

@ -5,11 +5,11 @@ from torch.nn import ModuleList
from ml_lib.modules.blocks import ConvModule, LinearModule
from ml_lib.modules.utils import LightningBaseModule
from util.module_mixins import (BaseOptimizerMixin, BaseTrainMixin, BaseValMixin, BinaryMaskDatasetFunction,
from util.module_mixins import (BaseOptimizerMixin, BaseTrainMixin, BaseValMixin, BinaryMaskDatasetMixin,
BaseDataloadersMixin)
class ConvClassifier(BinaryMaskDatasetFunction,
class ConvClassifier(BinaryMaskDatasetMixin,
BaseDataloadersMixin,
BaseTrainMixin,
BaseValMixin,

View File

@ -8,11 +8,11 @@ from torch.nn import ModuleList
from ml_lib.modules.utils import LightningBaseModule
from ml_lib.utils.config import Config
from ml_lib.utils.model_io import SavedLightningModels
from util.module_mixins import (BaseOptimizerMixin, BaseTrainMixin, BaseValMixin, BinaryMaskDatasetFunction,
from util.module_mixins import (BaseOptimizerMixin, BaseTrainMixin, BaseValMixin, BinaryMaskDatasetMixin,
BaseDataloadersMixin)
class Ensemble(BinaryMaskDatasetFunction,
class Ensemble(BinaryMaskDatasetMixin,
BaseDataloadersMixin,
BaseTrainMixin,
BaseValMixin,

View File

@ -5,11 +5,11 @@ from torch.nn import ModuleList
from ml_lib.modules.blocks import ConvModule, LinearModule, ResidualModule
from ml_lib.modules.utils import LightningBaseModule
from util.module_mixins import (BaseOptimizerMixin, BaseTrainMixin, BaseValMixin, BinaryMaskDatasetFunction,
from util.module_mixins import (BaseOptimizerMixin, BaseTrainMixin, BaseValMixin, BinaryMaskDatasetMixin,
BaseDataloadersMixin)
class ResidualConvClassifier(BinaryMaskDatasetFunction,
class ResidualConvClassifier(BinaryMaskDatasetMixin,
BaseDataloadersMixin,
BaseTrainMixin,
BaseValMixin,
@ -45,6 +45,8 @@ class ResidualConvClassifier(BinaryMaskDatasetFunction,
last_shape = self.conv_list[-1].shape
self.conv_list.append(ConvModule(last_shape, filters, (k, k), conv_stride=(2, 2), conv_padding=2,
**self.params.module_kwargs))
for param in self.conv_list[-1].parameters():
param.requires_grad = False
last_shape = self.conv_list[-1].shape
self.full_1 = LinearModule(self.conv_list[-1].shape, self.params.lat_dim, **self.params.module_kwargs)

View File

@ -105,7 +105,7 @@ class BaseValMixin:
return summary_dict
class BinaryMaskDatasetFunction:
class BinaryMaskDatasetMixin:
def build_dataset(self):
assert isinstance(self, LightningBaseModule)