2020-05-14 23:08:36 +02:00

56 lines
2.1 KiB
Python

from argparse import Namespace
from pathlib import Path
import torch
from torch import nn
from torch.nn import ModuleList
from ml_lib.modules.utils import LightningBaseModule
from ml_lib.utils.config import Config
from ml_lib.utils.model_io import SavedLightningModels
from util.module_mixins import (BaseOptimizerMixin, BaseTrainMixin, BaseValMixin, BinaryMaskDatasetMixin,
BaseDataloadersMixin)
class Ensemble(BinaryMaskDatasetMixin,
BaseDataloadersMixin,
BaseTrainMixin,
BaseValMixin,
BaseOptimizerMixin,
LightningBaseModule
):
def __init__(self, hparams):
super(Ensemble, self).__init__(hparams)
# Dataset
# =============================================================================
self.dataset = self.build_dataset()
# Model Paramters
# =============================================================================
# Additional parameters
self.in_shape = self.dataset.train_dataset.sample_shape
self.conv_filters = self.params.filters
self.criterion = nn.BCELoss()
# Pre_trained_models
out_path = Path('output') / self.params.secondary_type
# exp_paths = list(out_path.rglob(f'*{self.params.exp_fingerprint}'))
exp_paths = list(out_path.rglob('*e87b8f455ba134504b1ae17114ac2a2a'))
config_ini_files = sum([list(exp_path.rglob('config.ini')) for exp_path in exp_paths], [])
self.model_list = ModuleList()
configs = [Config() for _ in range(len(config_ini_files))]
for config, ini_file in zip(configs, config_ini_files):
config.read_file(ini_file.open('r'))
model = SavedLightningModels.load_checkpoint(models_root_path=config.exp_path / config.version).restore()
self.model_list.append(model)
def forward(self, batch, **kwargs):
ys = [model(batch).main_out for model in self.model_list]
tensor = torch.stack(ys).mean(dim=0)
return Namespace(main_out=tensor)