requirements
This commit is contained in:
parent
407df15bbf
commit
e7d1a4895a
@ -30,12 +30,12 @@ main_arg_parser.add_argument("--data_n_fft", type=int, default=512, help="")
|
|||||||
main_arg_parser.add_argument("--data_mixup", type=strtobool, default=False, help="")
|
main_arg_parser.add_argument("--data_mixup", type=strtobool, default=False, help="")
|
||||||
|
|
||||||
# Transformation Parameters
|
# Transformation Parameters
|
||||||
main_arg_parser.add_argument("--data_loudness_ratio", type=float, default=0.4, help="")
|
main_arg_parser.add_argument("--data_loudness_ratio", type=float, default=0, help="") # 0.4
|
||||||
main_arg_parser.add_argument("--data_shift_ratio", type=float, default=0.3, help="")
|
main_arg_parser.add_argument("--data_shift_ratio", type=float, default=0, help="") # 0.3
|
||||||
main_arg_parser.add_argument("--data_noise_ratio", type=float, default=0.4, help="")
|
main_arg_parser.add_argument("--data_noise_ratio", type=float, default=0, help="") # 0.4
|
||||||
main_arg_parser.add_argument("--data_mask_ratio", type=float, default=0.2, help="")
|
main_arg_parser.add_argument("--data_mask_ratio", type=float, default=0.2, help="") # 0.2
|
||||||
main_arg_parser.add_argument("--data_speed_ratio", type=float, default=0.3, help="")
|
main_arg_parser.add_argument("--data_speed_ratio", type=float, default=0.3, help="") # 0.3
|
||||||
main_arg_parser.add_argument("--data_speed_factor", type=float, default=0.7, help="")
|
main_arg_parser.add_argument("--data_speed_factor", type=float, default=0.7, help="") # 0.7
|
||||||
|
|
||||||
# Training Parameters
|
# Training Parameters
|
||||||
main_arg_parser.add_argument("--train_outpath", type=str, default="output", help="")
|
main_arg_parser.add_argument("--train_outpath", type=str, default="output", help="")
|
||||||
@ -49,8 +49,8 @@ main_arg_parser.add_argument("--train_lr", type=float, default=1e-4, help="")
|
|||||||
main_arg_parser.add_argument("--train_num_sanity_val_steps", type=int, default=0, help="")
|
main_arg_parser.add_argument("--train_num_sanity_val_steps", type=int, default=0, help="")
|
||||||
|
|
||||||
# Model Parameters
|
# Model Parameters
|
||||||
main_arg_parser.add_argument("--model_type", type=str, default="CC", help="")
|
main_arg_parser.add_argument("--model_type", type=str, default="BCMC", help="")
|
||||||
main_arg_parser.add_argument("--model_secondary_type", type=str, default="CC", help="")
|
main_arg_parser.add_argument("--model_secondary_type", type=str, default="BCMC", help="")
|
||||||
main_arg_parser.add_argument("--model_weight_init", type=str, default="xavier_normal_", help="")
|
main_arg_parser.add_argument("--model_weight_init", type=str, default="xavier_normal_", help="")
|
||||||
main_arg_parser.add_argument("--model_activation", type=str, default="leaky_relu", help="")
|
main_arg_parser.add_argument("--model_activation", type=str, default="leaky_relu", help="")
|
||||||
main_arg_parser.add_argument("--model_filters", type=str, default="[32, 64, 128, 64]", help="")
|
main_arg_parser.add_argument("--model_filters", type=str, default="[32, 64, 128, 64]", help="")
|
||||||
|
@ -47,9 +47,10 @@ class BinaryMasksDataset(Dataset):
|
|||||||
filename, label = row.strip().split(',')
|
filename, label = row.strip().split(',')
|
||||||
labeldict[filename] = self._to_label[label.lower()] if not self.setting == 'test' else filename
|
labeldict[filename] = self._to_label[label.lower()] if not self.setting == 'test' else filename
|
||||||
if self.stretch and self.setting == V.DATA_OPTIONS.train:
|
if self.stretch and self.setting == V.DATA_OPTIONS.train:
|
||||||
labeldict.update({f'X_{key}': val for key, val in labeldict.items()})
|
additional_dict = ({f'X_{key}': val for key, val in labeldict.items()})
|
||||||
labeldict.update({f'X_X_{key}': val for key, val in labeldict.items()})
|
additional_dict.update({f'X_X_{key}': val for key, val in labeldict.items()})
|
||||||
labeldict.update({f'X_X_X_{key}': val for key, val in labeldict.items()})
|
additional_dict.update({f'X_X_X_{key}': val for key, val in labeldict.items()})
|
||||||
|
labeldict.update(additional_dict)
|
||||||
return labeldict
|
return labeldict
|
||||||
|
|
||||||
def __len__(self):
|
def __len__(self):
|
||||||
|
@ -5,7 +5,7 @@ from tqdm import tqdm
|
|||||||
|
|
||||||
import variables as V
|
import variables as V
|
||||||
from torch.utils.data import DataLoader, Dataset
|
from torch.utils.data import DataLoader, Dataset
|
||||||
from torchvision.transforms import Compose
|
from torchvision.transforms import Compose, RandomApply
|
||||||
|
|
||||||
from ml_lib.audio_toolset.audio_io import AudioToMel, NormalizeLocal, MelToImage
|
from ml_lib.audio_toolset.audio_io import AudioToMel, NormalizeLocal, MelToImage
|
||||||
|
|
||||||
@ -13,6 +13,7 @@ from ml_lib.audio_toolset.audio_io import AudioToMel, NormalizeLocal, MelToImage
|
|||||||
# =============================================================================
|
# =============================================================================
|
||||||
|
|
||||||
# Transforms
|
# Transforms
|
||||||
|
from ml_lib.audio_toolset.mel_augmentation import NoiseInjection, LoudnessManipulator, ShiftTime, MaskAug
|
||||||
from ml_lib.utils.logging import Logger
|
from ml_lib.utils.logging import Logger
|
||||||
from ml_lib.utils.model_io import SavedLightningModels
|
from ml_lib.utils.model_io import SavedLightningModels
|
||||||
from ml_lib.utils.transforms import ToTensor
|
from ml_lib.utils.transforms import ToTensor
|
||||||
@ -28,8 +29,18 @@ def prepare_dataloader(config_obj):
|
|||||||
AudioToMel(sr=config_obj.data.sr, n_mels=config_obj.data.n_mels, n_fft=config_obj.data.n_fft,
|
AudioToMel(sr=config_obj.data.sr, n_mels=config_obj.data.n_mels, n_fft=config_obj.data.n_fft,
|
||||||
hop_length=config_obj.data.hop_length), MelToImage()])
|
hop_length=config_obj.data.hop_length), MelToImage()])
|
||||||
transforms = Compose([NormalizeLocal(), ToTensor()])
|
transforms = Compose([NormalizeLocal(), ToTensor()])
|
||||||
|
aug_transforms = Compose([
|
||||||
|
RandomApply([
|
||||||
|
NoiseInjection(config_obj.data.noise_ratio),
|
||||||
|
LoudnessManipulator(config_obj.data.loudness_ratio),
|
||||||
|
ShiftTime(config_obj.data.shift_ratio),
|
||||||
|
MaskAug(config_obj.data.mask_ratio),
|
||||||
|
], p=0.6),
|
||||||
|
# Utility
|
||||||
|
NormalizeLocal(), ToTensor()
|
||||||
|
])
|
||||||
|
|
||||||
dataset: Dataset = BinaryMasksDataset(config_obj.data.root, setting='test',
|
dataset: Dataset = BinaryMasksDataset(config_obj.data.root, setting='train',
|
||||||
mel_transforms=mel_transforms, transforms=transforms
|
mel_transforms=mel_transforms, transforms=transforms
|
||||||
)
|
)
|
||||||
# noinspection PyTypeChecker
|
# noinspection PyTypeChecker
|
||||||
@ -49,9 +60,9 @@ def restore_logger_and_model(config_obj):
|
|||||||
|
|
||||||
if __name__ == '__main__':
|
if __name__ == '__main__':
|
||||||
outpath = Path('output')
|
outpath = Path('output')
|
||||||
model_type = 'BandwiseConvMultiheadClassifier'
|
model_type = 'CC'
|
||||||
parameters = 'BCMC_9c70168a5711c269b33701f1650adfb9/'
|
parameters = 'CC_213adb16e46592c5a405abfbd693835e/'
|
||||||
version = 'version_1'
|
version = 'version_41'
|
||||||
config_filename = 'config.ini'
|
config_filename = 'config.ini'
|
||||||
inference_out = 'manual_test_out.csv'
|
inference_out = 'manual_test_out.csv'
|
||||||
|
|
||||||
|
@ -5,11 +5,11 @@ from torch.nn import ModuleList
|
|||||||
|
|
||||||
from ml_lib.modules.blocks import ConvModule, LinearModule
|
from ml_lib.modules.blocks import ConvModule, LinearModule
|
||||||
from ml_lib.modules.utils import (LightningBaseModule, HorizontalSplitter, HorizontalMerger)
|
from ml_lib.modules.utils import (LightningBaseModule, HorizontalSplitter, HorizontalMerger)
|
||||||
from util.module_mixins import (BaseOptimizerMixin, BaseTrainMixin, BaseValMixin, BinaryMaskDatasetFunction,
|
from util.module_mixins import (BaseOptimizerMixin, BaseTrainMixin, BaseValMixin, BinaryMaskDatasetMixin,
|
||||||
BaseDataloadersMixin)
|
BaseDataloadersMixin)
|
||||||
|
|
||||||
|
|
||||||
class BandwiseConvClassifier(BinaryMaskDatasetFunction,
|
class BandwiseConvClassifier(BinaryMaskDatasetMixin,
|
||||||
BaseDataloadersMixin,
|
BaseDataloadersMixin,
|
||||||
BaseTrainMixin,
|
BaseTrainMixin,
|
||||||
BaseValMixin,
|
BaseValMixin,
|
||||||
|
@ -6,11 +6,11 @@ from torch.nn import ModuleList
|
|||||||
|
|
||||||
from ml_lib.modules.blocks import ConvModule, LinearModule
|
from ml_lib.modules.blocks import ConvModule, LinearModule
|
||||||
from ml_lib.modules.utils import (LightningBaseModule, Flatten, HorizontalSplitter)
|
from ml_lib.modules.utils import (LightningBaseModule, Flatten, HorizontalSplitter)
|
||||||
from util.module_mixins import (BaseOptimizerMixin, BaseTrainMixin, BaseValMixin, BinaryMaskDatasetFunction,
|
from util.module_mixins import (BaseOptimizerMixin, BaseTrainMixin, BaseValMixin, BinaryMaskDatasetMixin,
|
||||||
BaseDataloadersMixin)
|
BaseDataloadersMixin)
|
||||||
|
|
||||||
|
|
||||||
class BandwiseConvMultiheadClassifier(BinaryMaskDatasetFunction,
|
class BandwiseConvMultiheadClassifier(BinaryMaskDatasetMixin,
|
||||||
BaseDataloadersMixin,
|
BaseDataloadersMixin,
|
||||||
BaseTrainMixin,
|
BaseTrainMixin,
|
||||||
BaseValMixin,
|
BaseValMixin,
|
||||||
@ -42,7 +42,7 @@ class BandwiseConvMultiheadClassifier(BinaryMaskDatasetFunction,
|
|||||||
return_dict = {f'band_{band_idx}_val_loss': band_y for band_idx, band_y in enumerate(bands_y_losses)}
|
return_dict = {f'band_{band_idx}_val_loss': band_y for band_idx, band_y in enumerate(bands_y_losses)}
|
||||||
|
|
||||||
last_bce_loss = self.bce_loss(y, batch_y)
|
last_bce_loss = self.bce_loss(y, batch_y)
|
||||||
return_dict.update(last_bce_loss=last_bce_loss)
|
return_dict.update(last_val_bce_loss=last_bce_loss)
|
||||||
|
|
||||||
bands_y_losses.append(last_bce_loss)
|
bands_y_losses.append(last_bce_loss)
|
||||||
combined_loss = torch.stack(bands_y_losses).mean()
|
combined_loss = torch.stack(bands_y_losses).mean()
|
||||||
@ -76,7 +76,7 @@ class BandwiseConvMultiheadClassifier(BinaryMaskDatasetFunction,
|
|||||||
last_shape = self.split.shape
|
last_shape = self.split.shape
|
||||||
conv_list = ModuleList()
|
conv_list = ModuleList()
|
||||||
for filters in self.conv_filters:
|
for filters in self.conv_filters:
|
||||||
conv_list.append(ConvModule(last_shape, filters, (k,k), conv_stride=(1, 1),
|
conv_list.append(ConvModule(last_shape, filters, (k, k), conv_stride=(2, 2), conv_padding=2,
|
||||||
**self.params.module_kwargs))
|
**self.params.module_kwargs))
|
||||||
last_shape = conv_list[-1].shape
|
last_shape = conv_list[-1].shape
|
||||||
# self.conv_list.append(ConvModule(last_shape, 1, 1, conv_stride=1, **self.params.module_kwargs))
|
# self.conv_list.append(ConvModule(last_shape, 1, 1, conv_stride=1, **self.params.module_kwargs))
|
||||||
@ -84,10 +84,10 @@ class BandwiseConvMultiheadClassifier(BinaryMaskDatasetFunction,
|
|||||||
self.band_list.append(conv_list)
|
self.band_list.append(conv_list)
|
||||||
|
|
||||||
self.bandwise_deep_list_1 = ModuleList([
|
self.bandwise_deep_list_1 = ModuleList([
|
||||||
LinearModule(self.band_list[0][-1].shape, self.params.lat_dim * 4, **self.params.module_kwargs)
|
LinearModule(self.band_list[0][-1].shape, self.params.lat_dim, **self.params.module_kwargs)
|
||||||
for _ in range(self.n_band_sections)])
|
for _ in range(self.n_band_sections)])
|
||||||
self.bandwise_deep_list_2 = ModuleList([
|
self.bandwise_deep_list_2 = ModuleList([
|
||||||
LinearModule(self.params.lat_dim * 4, self.params.lat_dim * 2, **self.params.module_kwargs)
|
LinearModule(self.params.lat_dim, self.params.lat_dim * 2, **self.params.module_kwargs)
|
||||||
for _ in range(self.n_band_sections)])
|
for _ in range(self.n_band_sections)])
|
||||||
self.bandwise_latent_list = ModuleList([
|
self.bandwise_latent_list = ModuleList([
|
||||||
LinearModule(self.params.lat_dim * 2, self.params.lat_dim, **self.params.module_kwargs)
|
LinearModule(self.params.lat_dim * 2, self.params.lat_dim, **self.params.module_kwargs)
|
||||||
@ -96,7 +96,7 @@ class BandwiseConvMultiheadClassifier(BinaryMaskDatasetFunction,
|
|||||||
LinearModule(self.params.lat_dim, 1, bias=self.params.bias, activation=nn.Sigmoid)
|
LinearModule(self.params.lat_dim, 1, bias=self.params.bias, activation=nn.Sigmoid)
|
||||||
for _ in range(self.n_band_sections)])
|
for _ in range(self.n_band_sections)])
|
||||||
|
|
||||||
self.full_1 = LinearModule(self.n_band_sections, self.params.lat_dim * 4, **self.params.module_kwargs)
|
self.full_1 = LinearModule(self.n_band_sections, self.params.lat_dim, **self.params.module_kwargs)
|
||||||
self.full_2 = LinearModule(self.full_1.shape, self.params.lat_dim * 2, **self.params.module_kwargs)
|
self.full_2 = LinearModule(self.full_1.shape, self.params.lat_dim * 2, **self.params.module_kwargs)
|
||||||
self.full_3 = LinearModule(self.full_2.shape, self.params.lat_dim, **self.params.module_kwargs)
|
self.full_3 = LinearModule(self.full_2.shape, self.params.lat_dim, **self.params.module_kwargs)
|
||||||
self.full_out = LinearModule(self.full_3.shape, 1, bias=self.params.bias, activation=nn.Sigmoid)
|
self.full_out = LinearModule(self.full_3.shape, 1, bias=self.params.bias, activation=nn.Sigmoid)
|
||||||
|
@ -5,11 +5,11 @@ from torch.nn import ModuleList
|
|||||||
|
|
||||||
from ml_lib.modules.blocks import ConvModule, LinearModule
|
from ml_lib.modules.blocks import ConvModule, LinearModule
|
||||||
from ml_lib.modules.utils import LightningBaseModule
|
from ml_lib.modules.utils import LightningBaseModule
|
||||||
from util.module_mixins import (BaseOptimizerMixin, BaseTrainMixin, BaseValMixin, BinaryMaskDatasetFunction,
|
from util.module_mixins import (BaseOptimizerMixin, BaseTrainMixin, BaseValMixin, BinaryMaskDatasetMixin,
|
||||||
BaseDataloadersMixin)
|
BaseDataloadersMixin)
|
||||||
|
|
||||||
|
|
||||||
class ConvClassifier(BinaryMaskDatasetFunction,
|
class ConvClassifier(BinaryMaskDatasetMixin,
|
||||||
BaseDataloadersMixin,
|
BaseDataloadersMixin,
|
||||||
BaseTrainMixin,
|
BaseTrainMixin,
|
||||||
BaseValMixin,
|
BaseValMixin,
|
||||||
|
@ -8,17 +8,17 @@ from torch.nn import ModuleList
|
|||||||
from ml_lib.modules.utils import LightningBaseModule
|
from ml_lib.modules.utils import LightningBaseModule
|
||||||
from ml_lib.utils.config import Config
|
from ml_lib.utils.config import Config
|
||||||
from ml_lib.utils.model_io import SavedLightningModels
|
from ml_lib.utils.model_io import SavedLightningModels
|
||||||
from util.module_mixins import (BaseOptimizerMixin, BaseTrainMixin, BaseValMixin, BinaryMaskDatasetFunction,
|
from util.module_mixins import (BaseOptimizerMixin, BaseTrainMixin, BaseValMixin, BinaryMaskDatasetMixin,
|
||||||
BaseDataloadersMixin)
|
BaseDataloadersMixin)
|
||||||
|
|
||||||
|
|
||||||
class Ensemble(BinaryMaskDatasetFunction,
|
class Ensemble(BinaryMaskDatasetMixin,
|
||||||
BaseDataloadersMixin,
|
BaseDataloadersMixin,
|
||||||
BaseTrainMixin,
|
BaseTrainMixin,
|
||||||
BaseValMixin,
|
BaseValMixin,
|
||||||
BaseOptimizerMixin,
|
BaseOptimizerMixin,
|
||||||
LightningBaseModule
|
LightningBaseModule
|
||||||
):
|
):
|
||||||
|
|
||||||
def __init__(self, hparams):
|
def __init__(self, hparams):
|
||||||
super(Ensemble, self).__init__(hparams)
|
super(Ensemble, self).__init__(hparams)
|
||||||
|
@ -5,11 +5,11 @@ from torch.nn import ModuleList
|
|||||||
|
|
||||||
from ml_lib.modules.blocks import ConvModule, LinearModule, ResidualModule
|
from ml_lib.modules.blocks import ConvModule, LinearModule, ResidualModule
|
||||||
from ml_lib.modules.utils import LightningBaseModule
|
from ml_lib.modules.utils import LightningBaseModule
|
||||||
from util.module_mixins import (BaseOptimizerMixin, BaseTrainMixin, BaseValMixin, BinaryMaskDatasetFunction,
|
from util.module_mixins import (BaseOptimizerMixin, BaseTrainMixin, BaseValMixin, BinaryMaskDatasetMixin,
|
||||||
BaseDataloadersMixin)
|
BaseDataloadersMixin)
|
||||||
|
|
||||||
|
|
||||||
class ResidualConvClassifier(BinaryMaskDatasetFunction,
|
class ResidualConvClassifier(BinaryMaskDatasetMixin,
|
||||||
BaseDataloadersMixin,
|
BaseDataloadersMixin,
|
||||||
BaseTrainMixin,
|
BaseTrainMixin,
|
||||||
BaseValMixin,
|
BaseValMixin,
|
||||||
@ -45,6 +45,8 @@ class ResidualConvClassifier(BinaryMaskDatasetFunction,
|
|||||||
last_shape = self.conv_list[-1].shape
|
last_shape = self.conv_list[-1].shape
|
||||||
self.conv_list.append(ConvModule(last_shape, filters, (k, k), conv_stride=(2, 2), conv_padding=2,
|
self.conv_list.append(ConvModule(last_shape, filters, (k, k), conv_stride=(2, 2), conv_padding=2,
|
||||||
**self.params.module_kwargs))
|
**self.params.module_kwargs))
|
||||||
|
for param in self.conv_list[-1].parameters():
|
||||||
|
param.requires_grad = False
|
||||||
last_shape = self.conv_list[-1].shape
|
last_shape = self.conv_list[-1].shape
|
||||||
|
|
||||||
self.full_1 = LinearModule(self.conv_list[-1].shape, self.params.lat_dim, **self.params.module_kwargs)
|
self.full_1 = LinearModule(self.conv_list[-1].shape, self.params.lat_dim, **self.params.module_kwargs)
|
||||||
|
@ -105,7 +105,7 @@ class BaseValMixin:
|
|||||||
return summary_dict
|
return summary_dict
|
||||||
|
|
||||||
|
|
||||||
class BinaryMaskDatasetFunction:
|
class BinaryMaskDatasetMixin:
|
||||||
|
|
||||||
def build_dataset(self):
|
def build_dataset(self):
|
||||||
assert isinstance(self, LightningBaseModule)
|
assert isinstance(self, LightningBaseModule)
|
||||||
|
Loading…
x
Reference in New Issue
Block a user