Model Training
This commit is contained in:
parent
8a97f59906
commit
e4f6506a4b
56
_paramters.py
Normal file
56
_paramters.py
Normal file
@ -0,0 +1,56 @@
|
|||||||
|
from argparse import ArgumentParser, Namespace
|
||||||
|
from distutils.util import strtobool
|
||||||
|
from pathlib import Path
|
||||||
|
|
||||||
|
import os
|
||||||
|
|
||||||
|
# Parameter Configuration
|
||||||
|
# =============================================================================
|
||||||
|
# Argument Parser
|
||||||
|
|
||||||
|
_ROOT = Path(__file__).parent
|
||||||
|
|
||||||
|
main_arg_parser = ArgumentParser(description="parser for fast-neural-style")
|
||||||
|
|
||||||
|
# Main Parameters
|
||||||
|
main_arg_parser.add_argument("--main_debug", type=strtobool, default=False, help="")
|
||||||
|
main_arg_parser.add_argument("--main_eval", type=strtobool, default=False, help="")
|
||||||
|
main_arg_parser.add_argument("--main_seed", type=int, default=69, help="")
|
||||||
|
|
||||||
|
# Data Parameters
|
||||||
|
main_arg_parser.add_argument("--data_worker", type=int, default=10, help="")
|
||||||
|
main_arg_parser.add_argument("--data_root", type=str, default='data', help="")
|
||||||
|
main_arg_parser.add_argument("--data_class_name", type=str, default='BinaryMasksDataset', help="")
|
||||||
|
main_arg_parser.add_argument("--data_normalized", type=strtobool, default=True, help="")
|
||||||
|
main_arg_parser.add_argument("--data_use_preprocessed", type=strtobool, default=True, help="")
|
||||||
|
|
||||||
|
# Transformation Parameters
|
||||||
|
main_arg_parser.add_argument("--transformations_to_tensor", type=strtobool, default=False, help="")
|
||||||
|
|
||||||
|
# Training Parameters
|
||||||
|
main_arg_parser.add_argument("--train_outpath", type=str, default="output", help="")
|
||||||
|
main_arg_parser.add_argument("--train_version", type=strtobool, required=False, help="")
|
||||||
|
main_arg_parser.add_argument("--train_epochs", type=int, default=500, help="")
|
||||||
|
main_arg_parser.add_argument("--train_batch_size", type=int, default=200, help="")
|
||||||
|
main_arg_parser.add_argument("--train_lr", type=float, default=1e-3, help="")
|
||||||
|
main_arg_parser.add_argument("--train_num_sanity_val_steps", type=int, default=0, help="")
|
||||||
|
|
||||||
|
# Model Parameters
|
||||||
|
main_arg_parser.add_argument("--model_type", type=str, default="BinaryClassifier", help="")
|
||||||
|
main_arg_parser.add_argument("--model_weight_init", type=str, default="xavier_normal_", help="")
|
||||||
|
main_arg_parser.add_argument("--model_activation", type=str, default="leaky_relu", help="")
|
||||||
|
main_arg_parser.add_argument("--model_filters", type=str, default="[16, 32, 64]", help="")
|
||||||
|
main_arg_parser.add_argument("--model_classes", type=int, default=2, help="")
|
||||||
|
main_arg_parser.add_argument("--model_lat_dim", type=int, default=16, help="")
|
||||||
|
main_arg_parser.add_argument("--model_bias", type=strtobool, default=True, help="")
|
||||||
|
main_arg_parser.add_argument("--model_norm", type=strtobool, default=False, help="")
|
||||||
|
main_arg_parser.add_argument("--model_dropout", type=float, default=0.00, help="")
|
||||||
|
|
||||||
|
# Project Parameters
|
||||||
|
main_arg_parser.add_argument("--project_name", type=str, default=_ROOT.name, help="")
|
||||||
|
main_arg_parser.add_argument("--project_owner", type=str, default='si11ium', help="")
|
||||||
|
main_arg_parser.add_argument("--project_neptune_key", type=str, default=os.getenv('NEPTUNE_KEY'), help="")
|
||||||
|
|
||||||
|
if __name__ == '__main__':
|
||||||
|
# Parse it
|
||||||
|
args: Namespace = main_arg_parser.parse_args()
|
@ -0,0 +1 @@
|
|||||||
|
from datasets.binar_masks import BinaryMasksDataset
|
@ -4,6 +4,7 @@ from pathlib import Path
|
|||||||
|
|
||||||
import librosa as librosa
|
import librosa as librosa
|
||||||
from torch.utils.data import Dataset
|
from torch.utils.data import Dataset
|
||||||
|
import torch
|
||||||
|
|
||||||
import variables as V
|
import variables as V
|
||||||
from ml_lib.modules.utils import F_x
|
from ml_lib.modules.utils import F_x
|
||||||
@ -11,18 +12,16 @@ from ml_lib.modules.utils import F_x
|
|||||||
|
|
||||||
class BinaryMasksDataset(Dataset):
|
class BinaryMasksDataset(Dataset):
|
||||||
_to_label = defaultdict(lambda: -1)
|
_to_label = defaultdict(lambda: -1)
|
||||||
_to_label['clear'] = V.CLEAR
|
_to_label.update(dict(clear=V.CLEAR, mask=V.MASK))
|
||||||
_to_label['mask'] = V.MASK
|
|
||||||
settings = ['test', 'devel', 'train']
|
|
||||||
|
|
||||||
@property
|
@property
|
||||||
def sample_shape(self):
|
def sample_shape(self):
|
||||||
return self[0][0].shape
|
return self[0][0].shape
|
||||||
|
|
||||||
def __init__(self, data_root, setting, transforms=None):
|
def __init__(self, data_root, setting, transforms=None):
|
||||||
assert isinstance(setting, str), f'Setting has to be a string, but was: {self.settings}.'
|
assert isinstance(setting, str), f'Setting has to be a string, but was: {type(setting)}.'
|
||||||
assert setting in self.settings, f'Setting must match one of: {self.settings}.'
|
assert setting in V.DATA_OPTIONS, f'Setting must match one of: {V.DATA_OPTIONS}.'
|
||||||
assert callable(transforms) or None, f'Transforms has to be callable, but was: {transforms}'
|
assert callable(transforms) or None, f'Transforms has to be callable, but was: {type(transforms)}'
|
||||||
super(BinaryMasksDataset, self).__init__()
|
super(BinaryMasksDataset, self).__init__()
|
||||||
|
|
||||||
self.data_root = Path(data_root)
|
self.data_root = Path(data_root)
|
||||||
@ -41,7 +40,7 @@ class BinaryMasksDataset(Dataset):
|
|||||||
for row in f:
|
for row in f:
|
||||||
if self.setting not in row:
|
if self.setting not in row:
|
||||||
continue
|
continue
|
||||||
filename, label = row.split(',')
|
filename, label = row.strip().split(',')
|
||||||
labeldict[filename] = self._to_label[label.lower()]
|
labeldict[filename] = self._to_label[label.lower()]
|
||||||
return labeldict
|
return labeldict
|
||||||
|
|
||||||
@ -60,5 +59,5 @@ class BinaryMasksDataset(Dataset):
|
|||||||
pickle.dump(transformed_sample, f, protocol=pickle.HIGHEST_PROTOCOL)
|
pickle.dump(transformed_sample, f, protocol=pickle.HIGHEST_PROTOCOL)
|
||||||
with (self._mel_folder / filename).open(mode='rb') as f:
|
with (self._mel_folder / filename).open(mode='rb') as f:
|
||||||
sample = pickle.load(f, fix_imports=True)
|
sample = pickle.load(f, fix_imports=True)
|
||||||
label = self._labels[key]
|
label = torch.as_tensor(self._labels[key], dtype=torch.float)
|
||||||
return sample, label
|
return sample, label
|
||||||
|
83
main.py
83
main.py
@ -1,81 +1,28 @@
|
|||||||
# Imports
|
# Imports
|
||||||
# =============================================================================
|
# =============================================================================
|
||||||
import os
|
|
||||||
from distutils.util import strtobool
|
|
||||||
from pathlib import Path
|
|
||||||
from argparse import ArgumentParser, Namespace
|
|
||||||
|
|
||||||
import warnings
|
import warnings
|
||||||
|
|
||||||
import torch
|
import torch
|
||||||
from pytorch_lightning import Trainer
|
from pytorch_lightning import Trainer
|
||||||
from pytorch_lightning.callbacks import ModelCheckpoint, EarlyStopping
|
from pytorch_lightning.callbacks import ModelCheckpoint, EarlyStopping
|
||||||
from torch.utils.data import DataLoader
|
|
||||||
from torchvision.transforms import Compose, ToTensor
|
|
||||||
|
|
||||||
from ml_lib.audio_toolset.audio_io import Melspectogram, NormalizeLocal, AutoPadToShape
|
|
||||||
from ml_lib.modules.utils import LightningBaseModule
|
from ml_lib.modules.utils import LightningBaseModule
|
||||||
from ml_lib.utils.logging import Logger
|
|
||||||
|
# Project Specific Config and Logger SubClasses
|
||||||
from util.config import MConfig
|
from util.config import MConfig
|
||||||
|
from util.logging import MLogger
|
||||||
|
|
||||||
warnings.filterwarnings('ignore', category=FutureWarning)
|
warnings.filterwarnings('ignore', category=FutureWarning)
|
||||||
warnings.filterwarnings('ignore', category=UserWarning)
|
warnings.filterwarnings('ignore', category=UserWarning)
|
||||||
|
|
||||||
_ROOT = Path(__file__).parent
|
|
||||||
|
|
||||||
# Parameter Configuration
|
|
||||||
# =============================================================================
|
|
||||||
# Argument Parser
|
|
||||||
main_arg_parser = ArgumentParser(description="parser for fast-neural-style")
|
|
||||||
|
|
||||||
# Main Parameters
|
|
||||||
main_arg_parser.add_argument("--main_debug", type=strtobool, default=False, help="")
|
|
||||||
main_arg_parser.add_argument("--main_eval", type=strtobool, default=True, help="")
|
|
||||||
main_arg_parser.add_argument("--main_seed", type=int, default=69, help="")
|
|
||||||
|
|
||||||
# Data Parameters
|
|
||||||
main_arg_parser.add_argument("--data_worker", type=int, default=10, help="")
|
|
||||||
main_arg_parser.add_argument("--data_dataset_length", type=int, default=10000, help="")
|
|
||||||
main_arg_parser.add_argument("--data_root", type=str, default='data', help="")
|
|
||||||
main_arg_parser.add_argument("--data_normalized", type=strtobool, default=True, help="")
|
|
||||||
main_arg_parser.add_argument("--data_use_preprocessed", type=strtobool, default=True, help="")
|
|
||||||
|
|
||||||
# Transformation Parameters
|
|
||||||
main_arg_parser.add_argument("--transformations_to_tensor", type=strtobool, default=False, help="")
|
|
||||||
|
|
||||||
# Training Parameters
|
|
||||||
main_arg_parser.add_argument("--train_outpath", type=str, default="output", help="")
|
|
||||||
main_arg_parser.add_argument("--train_version", type=strtobool, required=False, help="")
|
|
||||||
main_arg_parser.add_argument("--train_epochs", type=int, default=500, help="")
|
|
||||||
main_arg_parser.add_argument("--train_batch_size", type=int, default=200, help="")
|
|
||||||
main_arg_parser.add_argument("--train_lr", type=float, default=1e-3, help="")
|
|
||||||
main_arg_parser.add_argument("--train_num_sanity_val_steps", type=int, default=0, help="")
|
|
||||||
|
|
||||||
# Model Parameters
|
|
||||||
main_arg_parser.add_argument("--model_type", type=str, default="BinaryClassifier", help="")
|
|
||||||
main_arg_parser.add_argument("--model_activation", type=str, default="leaky_relu", help="")
|
|
||||||
main_arg_parser.add_argument("--model_filters", type=str, default="[16, 32, 64]", help="")
|
|
||||||
main_arg_parser.add_argument("--model_classes", type=int, default=2, help="")
|
|
||||||
main_arg_parser.add_argument("--model_lat_dim", type=int, default=16, help="")
|
|
||||||
main_arg_parser.add_argument("--model_bias", type=strtobool, default=True, help="")
|
|
||||||
main_arg_parser.add_argument("--model_norm", type=strtobool, default=False, help="")
|
|
||||||
main_arg_parser.add_argument("--model_dropout", type=float, default=0.00, help="")
|
|
||||||
|
|
||||||
# Project Parameters
|
|
||||||
main_arg_parser.add_argument("--project_name", type=str, default=_ROOT.parent.name, help="")
|
|
||||||
main_arg_parser.add_argument("--project_owner", type=str, default='si11ium', help="")
|
|
||||||
main_arg_parser.add_argument("--project_neptune_key", type=str, default=os.getenv('NEPTUNE_KEY'), help="")
|
|
||||||
|
|
||||||
# Parse it
|
|
||||||
args: Namespace = main_arg_parser.parse_args()
|
|
||||||
|
|
||||||
|
|
||||||
def run_lightning_loop(config_obj):
|
def run_lightning_loop(config_obj):
|
||||||
|
|
||||||
# Logging
|
# Logging
|
||||||
# ================================================================================
|
# ================================================================================
|
||||||
# Logger
|
# Logger
|
||||||
with Logger(config_obj) as logger:
|
with MLogger(config_obj) as logger:
|
||||||
# Callbacks
|
# Callbacks
|
||||||
# =============================================================================
|
# =============================================================================
|
||||||
# Checkpoint Saving
|
# Checkpoint Saving
|
||||||
@ -93,24 +40,10 @@ def run_lightning_loop(config_obj):
|
|||||||
patience=0,
|
patience=0,
|
||||||
)
|
)
|
||||||
|
|
||||||
# Dataset and Dataloaders
|
|
||||||
# =============================================================================
|
|
||||||
# Transforms
|
|
||||||
transforms = Compose([Melspectogram(), ToTensor(), NormalizeLocal()])
|
|
||||||
# Datasets
|
|
||||||
from datasets.binar_masks import BinaryMasksDataset
|
|
||||||
train_dataset = BinaryMasksDataset(config_obj.data.root, setting='train', transforms=transforms)
|
|
||||||
val_dataset = BinaryMasksDataset(config_obj.data.root, setting='devel', transforms=transforms)
|
|
||||||
# Dataloaders
|
|
||||||
train_dataloader = DataLoader(train_dataset)
|
|
||||||
val_dataloader = DataLoader(val_dataset)
|
|
||||||
|
|
||||||
# Model
|
# Model
|
||||||
# =============================================================================
|
# =============================================================================
|
||||||
# Build and Init its Weights
|
# Build and Init its Weights
|
||||||
config_obj.set('model', 'in_shape', str(tuple(train_dataset.sample_shape)))
|
model: LightningBaseModule = config_obj.build_and_init_model()
|
||||||
model: LightningBaseModule = config_obj.build_and_init_model(weight_init_function=torch.nn.init.xavier_normal_
|
|
||||||
)
|
|
||||||
|
|
||||||
# Trainer
|
# Trainer
|
||||||
# =============================================================================
|
# =============================================================================
|
||||||
@ -129,7 +62,7 @@ def run_lightning_loop(config_obj):
|
|||||||
)
|
)
|
||||||
|
|
||||||
# Train It
|
# Train It
|
||||||
trainer.fit(model, train_dataloader=train_dataloader, val_dataloaders=val_dataloader)
|
trainer.fit(model)
|
||||||
|
|
||||||
# Save the last state & all parameters
|
# Save the last state & all parameters
|
||||||
trainer.save_checkpoint(logger.log_dir / 'weights.ckpt')
|
trainer.save_checkpoint(logger.log_dir / 'weights.ckpt')
|
||||||
@ -144,5 +77,7 @@ def run_lightning_loop(config_obj):
|
|||||||
|
|
||||||
if __name__ == "__main__":
|
if __name__ == "__main__":
|
||||||
|
|
||||||
config = MConfig.read_namespace(args)
|
from _paramters import main_arg_parser
|
||||||
|
|
||||||
|
config = MConfig.read_argparser(main_arg_parser)
|
||||||
trained_model = run_lightning_loop(config)
|
trained_model = run_lightning_loop(config)
|
||||||
|
44
main_inference.py
Normal file
44
main_inference.py
Normal file
@ -0,0 +1,44 @@
|
|||||||
|
from torch.utils.data import DataLoader, Dataset
|
||||||
|
from torchvision.transforms import Compose, ToTensor
|
||||||
|
|
||||||
|
from ml_lib.audio_toolset.audio_io import Melspectogram, NormalizeLocal
|
||||||
|
|
||||||
|
# Dataset and Dataloaders
|
||||||
|
# =============================================================================
|
||||||
|
|
||||||
|
# Transforms
|
||||||
|
from ml_lib.utils.model_io import SavedLightningModels
|
||||||
|
from util.config import MConfig
|
||||||
|
from util.logging import MLogger
|
||||||
|
|
||||||
|
transforms = Compose([Melspectogram(), ToTensor(), NormalizeLocal()])
|
||||||
|
|
||||||
|
# Datasets
|
||||||
|
from datasets.binar_masks import BinaryMasksDataset
|
||||||
|
|
||||||
|
|
||||||
|
def prepare_dataset(config_obj):
|
||||||
|
dataset: Dataset = BinaryMasksDataset(config_obj.data.root, setting='test', transforms=transforms)
|
||||||
|
return DataLoader(dataset=dataset,
|
||||||
|
batch_size=None,
|
||||||
|
worker=config_obj.data.worker,
|
||||||
|
shuffle=False)
|
||||||
|
|
||||||
|
|
||||||
|
def restore_logger_and_model(config_obj):
|
||||||
|
logger = MLogger(config_obj)
|
||||||
|
model = SavedLightningModels().load_checkpoint(models_root_path=logger.log_dir)
|
||||||
|
model = model.restore()
|
||||||
|
|
||||||
|
return model
|
||||||
|
|
||||||
|
|
||||||
|
if __name__ == '__main__':
|
||||||
|
from _paramters import main_arg_parser
|
||||||
|
|
||||||
|
config = MConfig().read_argparser(main_arg_parser)
|
||||||
|
test_dataset = prepare_dataset(config)
|
||||||
|
loaded_model = restore_logger_and_model(config)
|
||||||
|
print("run model here and find a format to store the output")
|
||||||
|
|
||||||
|
|
@ -1,24 +1,23 @@
|
|||||||
|
from argparse import Namespace
|
||||||
|
|
||||||
import torch
|
import torch
|
||||||
from torch import nn
|
from torch import nn
|
||||||
from torch.optim import Adam
|
from torch.optim import Adam
|
||||||
|
from torchvision.transforms import Compose, ToTensor
|
||||||
|
|
||||||
|
from ml_lib.audio_toolset.audio_io import Melspectogram, NormalizeLocal
|
||||||
from ml_lib.modules.blocks import ConvModule
|
from ml_lib.modules.blocks import ConvModule
|
||||||
from ml_lib.modules.utils import LightningBaseModule, Flatten
|
from ml_lib.modules.utils import LightningBaseModule, Flatten, BaseModuleMixin_Dataloaders
|
||||||
|
|
||||||
|
|
||||||
class BinaryClassifier(LightningBaseModule):
|
class BinaryClassifier(BaseModuleMixin_Dataloaders, LightningBaseModule):
|
||||||
def test_step(self, *args, **kwargs):
|
|
||||||
pass
|
|
||||||
|
|
||||||
def test_epoch_end(self, outputs):
|
|
||||||
pass
|
|
||||||
|
|
||||||
@classmethod
|
@classmethod
|
||||||
def name(cls):
|
def name(cls):
|
||||||
return cls.__name__
|
return cls.__name__
|
||||||
|
|
||||||
def configure_optimizers(self):
|
def configure_optimizers(self):
|
||||||
return Adam(params=self.parameters(), lr=self.hparams.lr)
|
return Adam(params=self.parameters(), lr=self.params.lr)
|
||||||
|
|
||||||
def training_step(self, batch_xy, batch_nb, *args, **kwargs):
|
def training_step(self, batch_xy, batch_nb, *args, **kwargs):
|
||||||
batch_x, batch_y = batch_xy
|
batch_x, batch_y = batch_xy
|
||||||
@ -26,11 +25,11 @@ class BinaryClassifier(LightningBaseModule):
|
|||||||
loss = self.criterion(y, batch_y)
|
loss = self.criterion(y, batch_y)
|
||||||
return dict(loss=loss)
|
return dict(loss=loss)
|
||||||
|
|
||||||
def validation_step(self, batch_xy, **kwargs):
|
def validation_step(self, batch_xy, batch_idx, *args, **kwargs):
|
||||||
batch_x, batch_y = batch_xy
|
batch_x, batch_y = batch_xy
|
||||||
y = self(batch_y)
|
y = self(batch_x)
|
||||||
val_loss = self.criterion(y, batch_y)
|
val_loss = self.criterion(y, batch_y)
|
||||||
return dict(val_loss=val_loss)
|
return dict(val_loss=val_loss, batch_idx=batch_idx)
|
||||||
|
|
||||||
def validation_epoch_end(self, outputs):
|
def validation_epoch_end(self, outputs):
|
||||||
overall_val_loss = torch.mean(torch.stack([output['val_loss'] for output in outputs]))
|
overall_val_loss = torch.mean(torch.stack([output['val_loss'] for output in outputs]))
|
||||||
@ -41,22 +40,36 @@ class BinaryClassifier(LightningBaseModule):
|
|||||||
def __init__(self, hparams):
|
def __init__(self, hparams):
|
||||||
super(BinaryClassifier, self).__init__(hparams)
|
super(BinaryClassifier, self).__init__(hparams)
|
||||||
|
|
||||||
self.criterion = nn.BCELoss()
|
# Dataset and Dataloaders
|
||||||
|
# =============================================================================
|
||||||
|
# Transforms
|
||||||
|
transforms = Compose([Melspectogram(), ToTensor(), NormalizeLocal()])
|
||||||
|
# Datasets
|
||||||
|
from datasets.binar_masks import BinaryMasksDataset
|
||||||
|
self.dataset = Namespace(
|
||||||
|
**dict(
|
||||||
|
train_dataset=BinaryMasksDataset(self.params.root, setting='train', transforms=transforms),
|
||||||
|
val_dataset=BinaryMasksDataset(self.params.root, setting='devel', transforms=transforms),
|
||||||
|
test_dataset=BinaryMasksDataset(self.params.root, setting='test', transforms=transforms),
|
||||||
|
)
|
||||||
|
)
|
||||||
|
|
||||||
|
# Model Paramters
|
||||||
|
# =============================================================================
|
||||||
# Additional parameters
|
# Additional parameters
|
||||||
self.in_shape = self.hparams.in_shape
|
self.in_shape = self.dataset.train_dataset.sample_shape
|
||||||
|
self.criterion = nn.BCELoss()
|
||||||
# Model Modules
|
# Modules
|
||||||
self.conv_1 = ConvModule(self.in_shape, 32, 3, conv_stride=2, **self.hparams.module_paramters)
|
self.conv_1 = ConvModule(self.in_shape, 32, 3, conv_stride=2, **self.params.module_kwargs)
|
||||||
self.conv_2 = ConvModule(self.conv_1.shape, 64, 5, conv_stride=2, **self.hparams.module_paramters)
|
self.conv_2 = ConvModule(self.conv_1.shape, 64, 5, conv_stride=2, **self.params.module_kwargs)
|
||||||
self.conv_3 = ConvModule(self.conv_2.shape, 128, 7, conv_stride=2, **self.hparams.module_paramters)
|
self.conv_3 = ConvModule(self.conv_2.shape, 128, 7, conv_stride=2, **self.params.module_kwargs)
|
||||||
|
|
||||||
self.flat = Flatten(self.conv_3.shape)
|
self.flat = Flatten(self.conv_3.shape)
|
||||||
self.full_1 = nn.Linear(self.flat.shape, 32, self.hparams.bias)
|
self.full_1 = nn.Linear(self.flat.shape, 32, self.params.bias)
|
||||||
self.full_2 = nn.Linear(self.full_1.out_features, self.full_1.out_features // 2, self.hparams.bias)
|
self.full_2 = nn.Linear(self.full_1.out_features, self.full_1.out_features // 2, self.params.bias)
|
||||||
|
|
||||||
self.activation = self.hparams.activation()
|
self.activation = self.params.activation()
|
||||||
self.full_out = nn.Linear(self.full_2.out_features, 1, self.hparams.bias)
|
self.full_out = nn.Linear(self.full_2.out_features, 1, self.params.bias)
|
||||||
self.sigmoid = nn.Sigmoid()
|
self.sigmoid = nn.Sigmoid()
|
||||||
|
|
||||||
def forward(self, batch, **kwargs):
|
def forward(self, batch, **kwargs):
|
||||||
|
@ -5,5 +5,5 @@ from models.binary_classifier import BinaryClassifier
|
|||||||
class MConfig(Config):
|
class MConfig(Config):
|
||||||
|
|
||||||
@property
|
@property
|
||||||
def model_map(self):
|
def _model_map(self):
|
||||||
return dict(BinaryClassifier=BinaryClassifier)
|
return dict(BinaryClassifier=BinaryClassifier)
|
||||||
|
11
util/logging.py
Normal file
11
util/logging.py
Normal file
@ -0,0 +1,11 @@
|
|||||||
|
from pathlib import Path
|
||||||
|
|
||||||
|
from ml_lib.utils.logging import Logger
|
||||||
|
|
||||||
|
|
||||||
|
class MLogger(Logger):
|
||||||
|
|
||||||
|
@property
|
||||||
|
def outpath(self):
|
||||||
|
# FIXME: Specify a special path
|
||||||
|
return Path(self.config.train.outpath)
|
@ -1,3 +1,6 @@
|
|||||||
# Labels
|
# Labels
|
||||||
CLEAR = 0
|
CLEAR = 0
|
||||||
MASK = 1
|
MASK = 1
|
||||||
|
|
||||||
|
# Dataset Options
|
||||||
|
DATA_OPTIONS = ['test', 'devel', 'train']
|
||||||
|
Loading…
x
Reference in New Issue
Block a user