noise repair, fingerprint check
This commit is contained in:
parent
4a6b32d1dd
commit
d88a6bcf71
@ -31,13 +31,25 @@ main_arg_parser.add_argument("--data_mixup", type=strtobool, default=False, help
|
||||
main_arg_parser.add_argument("--data_stretch", type=strtobool, default=True, help="")
|
||||
|
||||
# Transformation Parameters
|
||||
main_arg_parser.add_argument("--data_loudness_ratio", type=float, default=0.4, help="") # 0.4
|
||||
main_arg_parser.add_argument("--data_shift_ratio", type=float, default=0.3, help="") # 0.3
|
||||
main_arg_parser.add_argument("--data_noise_ratio", type=float, default=0.4, help="") # 0.4
|
||||
main_arg_parser.add_argument("--data_mask_ratio", type=float, default=0.2, help="") # 0.2
|
||||
main_arg_parser.add_argument("--data_loudness_ratio", type=float, default=0, help="") # 0.4
|
||||
main_arg_parser.add_argument("--data_shift_ratio", type=float, default=0, help="") # 0.3
|
||||
main_arg_parser.add_argument("--data_noise_ratio", type=float, default=0, help="") # 0.4
|
||||
main_arg_parser.add_argument("--data_mask_ratio", type=float, default=0, help="") # 0.2
|
||||
main_arg_parser.add_argument("--data_speed_ratio", type=float, default=0.3, help="") # 0.3
|
||||
main_arg_parser.add_argument("--data_speed_factor", type=float, default=0.7, help="") # 0.7
|
||||
|
||||
# Model Parameters
|
||||
main_arg_parser.add_argument("--model_type", type=str, default="RCC", help="")
|
||||
main_arg_parser.add_argument("--model_secondary_type", type=str, default="RCC", help="")
|
||||
main_arg_parser.add_argument("--model_weight_init", type=str, default="xavier_normal_", help="")
|
||||
main_arg_parser.add_argument("--model_activation", type=str, default="leaky_relu", help="")
|
||||
main_arg_parser.add_argument("--model_filters", type=str, default="[32, 64, 128, 64]", help="")
|
||||
main_arg_parser.add_argument("--model_classes", type=int, default=2, help="")
|
||||
main_arg_parser.add_argument("--model_lat_dim", type=int, default=128, help="")
|
||||
main_arg_parser.add_argument("--model_bias", type=strtobool, default=True, help="")
|
||||
main_arg_parser.add_argument("--model_norm", type=strtobool, default=True, help="")
|
||||
main_arg_parser.add_argument("--model_dropout", type=float, default=0.2, help="")
|
||||
|
||||
# Training Parameters
|
||||
main_arg_parser.add_argument("--train_outpath", type=str, default="output", help="")
|
||||
main_arg_parser.add_argument("--train_version", type=strtobool, required=False, help="")
|
||||
@ -49,18 +61,6 @@ main_arg_parser.add_argument("--train_batch_size", type=int, default=300, help="
|
||||
main_arg_parser.add_argument("--train_lr", type=float, default=1e-4, help="")
|
||||
main_arg_parser.add_argument("--train_num_sanity_val_steps", type=int, default=0, help="")
|
||||
|
||||
# Model Parameters
|
||||
main_arg_parser.add_argument("--model_type", type=str, default="BCMC", help="")
|
||||
main_arg_parser.add_argument("--model_secondary_type", type=str, default="BCMC", help="")
|
||||
main_arg_parser.add_argument("--model_weight_init", type=str, default="xavier_normal_", help="")
|
||||
main_arg_parser.add_argument("--model_activation", type=str, default="leaky_relu", help="")
|
||||
main_arg_parser.add_argument("--model_filters", type=str, default="[32, 64, 128, 64]", help="")
|
||||
main_arg_parser.add_argument("--model_classes", type=int, default=2, help="")
|
||||
main_arg_parser.add_argument("--model_lat_dim", type=int, default=128, help="")
|
||||
main_arg_parser.add_argument("--model_bias", type=strtobool, default=True, help="")
|
||||
main_arg_parser.add_argument("--model_norm", type=strtobool, default=True, help="")
|
||||
main_arg_parser.add_argument("--model_dropout", type=float, default=0.2, help="")
|
||||
|
||||
# Project Parameters
|
||||
main_arg_parser.add_argument("--project_name", type=str, default=_ROOT.name, help="")
|
||||
main_arg_parser.add_argument("--project_owner", type=str, default='si11ium', help="")
|
||||
|
@ -7,6 +7,7 @@ import variables as V
|
||||
from torch.utils.data import DataLoader, Dataset
|
||||
from torchvision.transforms import Compose, RandomApply
|
||||
|
||||
from ml_lib.audio_toolset.audio_augmentation import Speed
|
||||
from ml_lib.audio_toolset.audio_io import AudioToMel, NormalizeLocal, MelToImage
|
||||
|
||||
# Dataset and Dataloaders
|
||||
@ -17,6 +18,7 @@ from ml_lib.audio_toolset.mel_augmentation import NoiseInjection, LoudnessManipu
|
||||
from ml_lib.utils.logging import Logger
|
||||
from ml_lib.utils.model_io import SavedLightningModels
|
||||
from ml_lib.utils.transforms import ToTensor
|
||||
from ml_lib.visualization.tools import Plotter
|
||||
from util.config import MConfig
|
||||
|
||||
# Datasets
|
||||
@ -25,23 +27,21 @@ from datasets.binar_masks import BinaryMasksDataset
|
||||
|
||||
def prepare_dataloader(config_obj):
|
||||
mel_transforms = Compose([
|
||||
# Audio to Mel Transformations
|
||||
Speed(0, 0),
|
||||
AudioToMel(sr=config_obj.data.sr, n_mels=config_obj.data.n_mels, n_fft=config_obj.data.n_fft,
|
||||
hop_length=config_obj.data.hop_length), MelToImage()])
|
||||
hop_length=config_obj.data.hop_length),
|
||||
MelToImage()])
|
||||
transforms = Compose([NormalizeLocal(), ToTensor()])
|
||||
aug_transforms = Compose([
|
||||
RandomApply([
|
||||
NoiseInjection(config_obj.data.noise_ratio),
|
||||
LoudnessManipulator(config_obj.data.loudness_ratio),
|
||||
ShiftTime(config_obj.data.shift_ratio),
|
||||
MaskAug(config_obj.data.mask_ratio),
|
||||
], p=0.6),
|
||||
# Utility
|
||||
NoiseInjection(0.4),
|
||||
LoudnessManipulator(0.4),
|
||||
ShiftTime(0.3),
|
||||
MaskAug(0.2),
|
||||
NormalizeLocal(), ToTensor()
|
||||
])
|
||||
|
||||
dataset: Dataset = BinaryMasksDataset(config_obj.data.root, setting='train',
|
||||
mel_transforms=mel_transforms, transforms=transforms
|
||||
mel_transforms=mel_transforms, transforms=aug_transforms
|
||||
)
|
||||
# noinspection PyTypeChecker
|
||||
return DataLoader(dataset, batch_size=None, num_workers=0, shuffle=False)
|
||||
@ -69,6 +69,13 @@ if __name__ == '__main__':
|
||||
config = MConfig()
|
||||
config.read_file((outpath / model_type / parameters / version / config_filename).open('r'))
|
||||
test_dataloader = prepare_dataloader(config)
|
||||
p = Plotter(outpath)
|
||||
from matplotlib import pyplot as plt
|
||||
|
||||
d = test_dataloader.dataset[100][0].squeeze()
|
||||
plt.imshow(d)
|
||||
p.save_current_figure('100')
|
||||
|
||||
loaded_model = restore_logger_and_model(config)
|
||||
loaded_model.eval()
|
||||
|
||||
|
@ -12,6 +12,8 @@ config_file_name = 'config.ini'
|
||||
|
||||
if __name__ == '__main__':
|
||||
for model_path in outpath.iterdir():
|
||||
if not model_path.is_dir():
|
||||
continue
|
||||
out_file = (model_path / metric_file_name)
|
||||
for paramter_configuration in model_path.iterdir():
|
||||
uar_scores = defaultdict(list)
|
||||
@ -46,5 +48,8 @@ if __name__ == '__main__':
|
||||
writer = csv.DictWriter(f, delimiter=',', lineterminator='\n', fieldnames=headers)
|
||||
if not file_existed:
|
||||
writer.writeheader() # file doesn't exist yet, write a header
|
||||
try:
|
||||
for row_idx in range(len(uar_scores['mean'])):
|
||||
writer.writerow({key: uar_scores[key][row_idx] for key in headers})
|
||||
except IndexError:
|
||||
print('could not read: ')
|
Loading…
x
Reference in New Issue
Block a user