55 lines
2.3 KiB
Python
55 lines
2.3 KiB
Python
import csv
|
|
from collections import defaultdict
|
|
from pathlib import Path
|
|
import numpy as np
|
|
from util.config import MConfig
|
|
|
|
|
|
outpath = Path('..', 'output')
|
|
metric_file_name = 'metrics.csv'
|
|
config_file_name = 'config.ini'
|
|
|
|
|
|
if __name__ == '__main__':
|
|
for model_path in outpath.iterdir():
|
|
if not model_path.is_dir():
|
|
continue
|
|
out_file = (model_path / metric_file_name)
|
|
for paramter_configuration in model_path.iterdir():
|
|
uar_scores = defaultdict(list)
|
|
for metric_file in paramter_configuration.rglob(metric_file_name):
|
|
with metric_file.open('r') as f:
|
|
config = MConfig()
|
|
with (metric_file.parent / config_file_name).open('r') as c:
|
|
config.read_file(c)
|
|
for key, val in config.data.__dict__.items():
|
|
uar_scores[key].append(val)
|
|
|
|
headers = f.readline().split(',')
|
|
metric_dict = defaultdict(list)
|
|
for line in f:
|
|
values = line.split(',')
|
|
for header, value in zip(headers, values):
|
|
if value:
|
|
try:
|
|
metric_dict[header].append(float(value))
|
|
except ValueError:
|
|
metric_dict[header].append(value)
|
|
for score, func in zip(['mean', 'max', 'median', 'std'], [np.mean, np.max, np.median, np.std]):
|
|
try:
|
|
uar_scores[score].append(func(np.asarray(metric_dict['uar_score'])).round(2))
|
|
except ValueError as e:
|
|
print(e)
|
|
pass
|
|
file_existed = out_file.exists()
|
|
with out_file.open('a+') as f:
|
|
headers = list(uar_scores.keys())
|
|
|
|
writer = csv.DictWriter(f, delimiter=',', lineterminator='\n', fieldnames=headers)
|
|
if not file_existed:
|
|
writer.writeheader() # file doesn't exist yet, write a header
|
|
try:
|
|
for row_idx in range(len(uar_scores['mean'])):
|
|
writer.writerow({key: uar_scores[key][row_idx] for key in headers})
|
|
except IndexError:
|
|
print('could not read: ') |