Parameter Adjustmens and Ensemble Model Implementation
This commit is contained in:
parent
c2860b0aed
commit
5e6b0e598f
@ -14,37 +14,44 @@ main_arg_parser = ArgumentParser(description="parser for fast-neural-style")
|
||||
|
||||
# Main Parameters
|
||||
main_arg_parser.add_argument("--main_debug", type=strtobool, default=False, help="")
|
||||
main_arg_parser.add_argument("--main_eval", type=strtobool, default=False, help="")
|
||||
main_arg_parser.add_argument("--main_eval", type=strtobool, default=True, help="")
|
||||
main_arg_parser.add_argument("--main_seed", type=int, default=69, help="")
|
||||
|
||||
# Data Parameters
|
||||
main_arg_parser.add_argument("--data_worker", type=int, default=10, help="")
|
||||
main_arg_parser.add_argument("--data_worker", type=int, default=11, help="")
|
||||
main_arg_parser.add_argument("--data_root", type=str, default='data', help="")
|
||||
main_arg_parser.add_argument("--data_class_name", type=str, default='BinaryMasksDataset', help="")
|
||||
main_arg_parser.add_argument("--data_normalized", type=strtobool, default=True, help="")
|
||||
main_arg_parser.add_argument("--data_use_preprocessed", type=strtobool, default=True, help="")
|
||||
main_arg_parser.add_argument("--data_n_mels", type=int, default=64, help="")
|
||||
main_arg_parser.add_argument("--data_mixup", type=strtobool, default=False, help="")
|
||||
|
||||
# Transformation Parameters
|
||||
main_arg_parser.add_argument("--transformations_to_tensor", type=strtobool, default=False, help="")
|
||||
main_arg_parser.add_argument("--data_loudness_ratio", type=float, default=0.08, help="")
|
||||
main_arg_parser.add_argument("--data_shift_ratio", type=float, default=0.2, help="")
|
||||
main_arg_parser.add_argument("--data_noise_ratio", type=float, default=0.15, help="")
|
||||
|
||||
# Training Parameters
|
||||
main_arg_parser.add_argument("--train_outpath", type=str, default="output", help="")
|
||||
main_arg_parser.add_argument("--train_version", type=strtobool, required=False, help="")
|
||||
main_arg_parser.add_argument("--train_epochs", type=int, default=500, help="")
|
||||
main_arg_parser.add_argument("--train_batch_size", type=int, default=200, help="")
|
||||
# FIXME: Stochastic weight Avaraging is not good, maybe its my implementation?
|
||||
main_arg_parser.add_argument("--train_sto_weight_avg", type=strtobool, default=False, help="")
|
||||
main_arg_parser.add_argument("--train_epochs", type=int, default=600, help="")
|
||||
main_arg_parser.add_argument("--train_batch_size", type=int, default=250, help="")
|
||||
main_arg_parser.add_argument("--train_lr", type=float, default=1e-3, help="")
|
||||
main_arg_parser.add_argument("--train_num_sanity_val_steps", type=int, default=0, help="")
|
||||
|
||||
# Model Parameters
|
||||
main_arg_parser.add_argument("--model_type", type=str, default="BinaryClassifier", help="")
|
||||
main_arg_parser.add_argument("--model_type", type=str, default="ConvClassifier", help="")
|
||||
main_arg_parser.add_argument("--model_secondary_type", type=str, default="BandwiseConvMultiheadClassifier", help="")
|
||||
main_arg_parser.add_argument("--model_weight_init", type=str, default="xavier_normal_", help="")
|
||||
main_arg_parser.add_argument("--model_activation", type=str, default="leaky_relu", help="")
|
||||
main_arg_parser.add_argument("--model_filters", type=str, default="[16, 32, 64]", help="")
|
||||
main_arg_parser.add_argument("--model_filters", type=str, default="[16, 32, 64, 128]", help="")
|
||||
main_arg_parser.add_argument("--model_classes", type=int, default=2, help="")
|
||||
main_arg_parser.add_argument("--model_lat_dim", type=int, default=16, help="")
|
||||
main_arg_parser.add_argument("--model_lat_dim", type=int, default=8, help="")
|
||||
main_arg_parser.add_argument("--model_bias", type=strtobool, default=True, help="")
|
||||
main_arg_parser.add_argument("--model_norm", type=strtobool, default=False, help="")
|
||||
main_arg_parser.add_argument("--model_dropout", type=float, default=0.2, help="")
|
||||
main_arg_parser.add_argument("--model_norm", type=strtobool, default=True, help="")
|
||||
main_arg_parser.add_argument("--model_dropout", type=float, default=0.25, help="")
|
||||
|
||||
# Project Parameters
|
||||
main_arg_parser.add_argument("--project_name", type=str, default=_ROOT.name, help="")
|
||||
|
@ -1,6 +1,7 @@
|
||||
import pickle
|
||||
from collections import defaultdict
|
||||
from pathlib import Path
|
||||
import random
|
||||
|
||||
import librosa as librosa
|
||||
from torch.utils.data import Dataset
|
||||
@ -18,19 +19,21 @@ class BinaryMasksDataset(Dataset):
|
||||
def sample_shape(self):
|
||||
return self[0][0].shape
|
||||
|
||||
def __init__(self, data_root, setting, transforms=None):
|
||||
def __init__(self, data_root, setting, mel_transforms, transforms=None, mixup=False):
|
||||
assert isinstance(setting, str), f'Setting has to be a string, but was: {type(setting)}.'
|
||||
assert setting in V.DATA_OPTIONS, f'Setting must match one of: {V.DATA_OPTIONS}.'
|
||||
assert callable(transforms) or None, f'Transforms has to be callable, but was: {type(transforms)}'
|
||||
super(BinaryMasksDataset, self).__init__()
|
||||
|
||||
self.data_root = Path(data_root)
|
||||
self.setting = setting
|
||||
self.mixup = mixup
|
||||
self.container_ext = '.pik'
|
||||
self._mel_transform = mel_transforms
|
||||
self._transforms = transforms or F_x()
|
||||
self._labels = self._build_labels()
|
||||
self._wav_folder = self.data_root / 'wav'
|
||||
self._wav_files = list(sorted(self._labels.keys()))
|
||||
self._transformed_folder = self.data_root / 'transformed'
|
||||
self._mel_folder = self.data_root / 'mel'
|
||||
|
||||
def _build_labels(self):
|
||||
with open(Path(self.data_root) / 'lab' / 'labels.csv', mode='r') as f:
|
||||
@ -41,23 +44,45 @@ class BinaryMasksDataset(Dataset):
|
||||
if self.setting not in row:
|
||||
continue
|
||||
filename, label = row.strip().split(',')
|
||||
labeldict[filename] = self._to_label[label.lower()]
|
||||
labeldict[filename] = self._to_label[label.lower()] if not self.setting == 'test' else filename
|
||||
return labeldict
|
||||
|
||||
def __len__(self):
|
||||
return len(self._labels)
|
||||
return len(self._labels) * 2 if self.mixup else len(self._labels)
|
||||
|
||||
def _compute_or_retrieve(self, filename):
|
||||
if not (self._mel_folder / (filename + self.container_ext)).exists():
|
||||
raw_sample, sr = librosa.core.load(self._wav_folder / (filename + '.wav'))
|
||||
mel_sample = self._mel_transform(raw_sample)
|
||||
self._mel_folder.mkdir(exist_ok=True, parents=True)
|
||||
with (self._mel_folder / (filename + self.container_ext)).open(mode='wb') as f:
|
||||
pickle.dump(mel_sample, f, protocol=pickle.HIGHEST_PROTOCOL)
|
||||
with (self._mel_folder / (filename + self.container_ext)).open(mode='rb') as f:
|
||||
mel_sample = pickle.load(f, fix_imports=True)
|
||||
return mel_sample
|
||||
|
||||
def __getitem__(self, item):
|
||||
is_mixed = item >= len(self._labels)
|
||||
if is_mixed:
|
||||
item = item - len(self._labels)
|
||||
key = self._wav_files[item]
|
||||
filename = key[:-4] + '.pik'
|
||||
filename = key[:-4]
|
||||
mel_sample = self._compute_or_retrieve(filename)
|
||||
label = self._labels[key]
|
||||
|
||||
if not (self._transformed_folder / filename).exists():
|
||||
raw_sample, sr = librosa.core.load(self._wav_folder / self._wav_files[item])
|
||||
transformed_sample = self._transforms(raw_sample)
|
||||
self._transformed_folder.mkdir(exist_ok=True, parents=True)
|
||||
with (self._transformed_folder / filename).open(mode='wb') as f:
|
||||
pickle.dump(transformed_sample, f, protocol=pickle.HIGHEST_PROTOCOL)
|
||||
with (self._transformed_folder / filename).open(mode='rb') as f:
|
||||
sample = pickle.load(f, fix_imports=True)
|
||||
label = torch.as_tensor(self._labels[key], dtype=torch.float)
|
||||
return sample, label
|
||||
if is_mixed:
|
||||
label_sec = -1
|
||||
while label_sec != self._labels[key]:
|
||||
key_sec = random.choice(list(self._labels.keys()))
|
||||
label_sec = self._labels[key_sec]
|
||||
# noinspection PyUnboundLocalVariable
|
||||
filename_sec = key_sec[:-4]
|
||||
mel_sample_sec = self._compute_or_retrieve(filename_sec)
|
||||
mix_in_border = int(random.random() * mel_sample.shape[-1]) * random.choice([1, -1])
|
||||
mel_sample[:, :mix_in_border] = mel_sample_sec[:, :mix_in_border]
|
||||
|
||||
transformed_samples = self._transforms(mel_sample)
|
||||
if not self.setting == 'test':
|
||||
label = torch.as_tensor(label, dtype=torch.float)
|
||||
|
||||
return transformed_samples, label
|
||||
|
69
main.py
69
main.py
@ -1,6 +1,8 @@
|
||||
# Imports
|
||||
# =============================================================================
|
||||
from pathlib import Path
|
||||
|
||||
from tqdm import tqdm
|
||||
import warnings
|
||||
|
||||
import torch
|
||||
@ -8,10 +10,11 @@ from pytorch_lightning import Trainer
|
||||
from pytorch_lightning.callbacks import ModelCheckpoint, EarlyStopping
|
||||
|
||||
from ml_lib.modules.utils import LightningBaseModule
|
||||
from ml_lib.utils.logging import Logger
|
||||
|
||||
# Project Specific Config and Logger SubClasses
|
||||
# Project Specific Logger SubClasses
|
||||
from util.config import MConfig
|
||||
from util.logging import MLogger
|
||||
|
||||
|
||||
warnings.filterwarnings('ignore', category=FutureWarning)
|
||||
warnings.filterwarnings('ignore', category=UserWarning)
|
||||
@ -22,29 +25,25 @@ def run_lightning_loop(config_obj):
|
||||
# Logging
|
||||
# ================================================================================
|
||||
# Logger
|
||||
with MLogger(config_obj) as logger:
|
||||
with Logger(config_obj) as logger:
|
||||
# Callbacks
|
||||
# =============================================================================
|
||||
# Checkpoint Saving
|
||||
checkpoint_callback = ModelCheckpoint(
|
||||
monitor='uar_score',
|
||||
filepath=str(logger.log_dir / 'ckpt_weights'),
|
||||
verbose=True, save_top_k=0,
|
||||
verbose=False,
|
||||
save_top_k=5,
|
||||
)
|
||||
|
||||
# =============================================================================
|
||||
# Early Stopping
|
||||
# TODO: For This to work, set a validation step and End Eval and Score
|
||||
early_stopping_callback = EarlyStopping(
|
||||
monitor='val_loss',
|
||||
min_delta=0.0,
|
||||
patience=0,
|
||||
monitor='uar_score',
|
||||
min_delta=0.01,
|
||||
patience=10,
|
||||
)
|
||||
|
||||
# Model
|
||||
# =============================================================================
|
||||
# Build and Init its Weights
|
||||
model: LightningBaseModule = config_obj.build_and_init_model()
|
||||
|
||||
# Trainer
|
||||
# =============================================================================
|
||||
trainer = Trainer(max_epochs=config_obj.train.epochs,
|
||||
@ -61,7 +60,16 @@ def run_lightning_loop(config_obj):
|
||||
early_stop_callback=None
|
||||
)
|
||||
|
||||
# Model
|
||||
# =============================================================================
|
||||
# Build and Init its Weights
|
||||
model: LightningBaseModule = config_obj.build_and_init_model()
|
||||
# Log paramters
|
||||
pytorch_total_params = sum(p.numel() for p in model.parameters())
|
||||
logger.log_text('n_parameters', pytorch_total_params)
|
||||
|
||||
# Train It
|
||||
if config_obj.model.type.lower() != 'ensemble':
|
||||
trainer.fit(model)
|
||||
|
||||
# Save the last state & all parameters
|
||||
@ -70,8 +78,41 @@ def run_lightning_loop(config_obj):
|
||||
|
||||
# Evaluate It
|
||||
if config_obj.main.eval:
|
||||
trainer.test()
|
||||
model.eval()
|
||||
if torch.cuda.is_available():
|
||||
model.cuda()
|
||||
outputs = []
|
||||
from tqdm import tqdm
|
||||
for idx, batch in enumerate(tqdm(model.val_dataloader())):
|
||||
batch_x, label = batch
|
||||
outputs.append(
|
||||
model.validation_step((batch_x.to(device='cuda' if model.on_gpu else 'cpu'), label), idx)
|
||||
)
|
||||
summary_dict = model.validation_epoch_end(outputs)
|
||||
print(summary_dict['log']['uar_score'])
|
||||
|
||||
# trainer.test()
|
||||
outpath = Path(config_obj.train.outpath)
|
||||
model_type = config_obj.model.type
|
||||
parameters = logger.name
|
||||
version = f'version_{logger.version}'
|
||||
inference_out = f'{parameters}_test_out.csv'
|
||||
|
||||
from main_inference import prepare_dataloader
|
||||
test_dataloader = prepare_dataloader(config)
|
||||
|
||||
with (outpath / model_type / parameters / version / inference_out).open(mode='w') as outfile:
|
||||
outfile.write(f'file_name,prediction\n')
|
||||
|
||||
from tqdm import tqdm
|
||||
for batch in tqdm(test_dataloader, total=len(test_dataloader)):
|
||||
batch_x, file_name = batch
|
||||
batch_x = batch_x.unsqueeze(0).to(device='cuda' if model.on_gpu else 'cpu')
|
||||
y = model(batch_x).main_out
|
||||
prediction = (y.squeeze() >= 0.5).int().item()
|
||||
import variables as V
|
||||
prediction = 'clear' if prediction == V.CLEAR else 'mask'
|
||||
outfile.write(f'{file_name},{prediction}\n')
|
||||
return model
|
||||
|
||||
|
||||
|
@ -1,44 +1,70 @@
|
||||
from torch.utils.data import DataLoader, Dataset
|
||||
from torchvision.transforms import Compose, ToTensor
|
||||
from pathlib import Path
|
||||
|
||||
from ml_lib.audio_toolset.audio_io import AudioToMel, NormalizeLocal
|
||||
import torch
|
||||
from tqdm import tqdm
|
||||
|
||||
import variables as V
|
||||
from torch.utils.data import DataLoader, Dataset
|
||||
from torchvision.transforms import Compose
|
||||
|
||||
from ml_lib.audio_toolset.audio_io import AudioToMel, NormalizeLocal, MelToImage
|
||||
|
||||
# Dataset and Dataloaders
|
||||
# =============================================================================
|
||||
|
||||
# Transforms
|
||||
from ml_lib.utils.logging import Logger
|
||||
from ml_lib.utils.model_io import SavedLightningModels
|
||||
from ml_lib.utils.transforms import ToTensor
|
||||
from util.config import MConfig
|
||||
from util.logging import MLogger
|
||||
|
||||
transforms = Compose([AudioToMel(), ToTensor(), NormalizeLocal()])
|
||||
|
||||
# Datasets
|
||||
from datasets.binar_masks import BinaryMasksDataset
|
||||
|
||||
|
||||
def prepare_dataset(config_obj):
|
||||
dataset: Dataset = BinaryMasksDataset(config_obj.data.root, setting='test', transforms=transforms)
|
||||
return DataLoader(dataset=dataset,
|
||||
batch_size=None,
|
||||
worker=config_obj.data.worker,
|
||||
shuffle=False)
|
||||
def prepare_dataloader(config_obj):
|
||||
mel_transforms = Compose([AudioToMel(n_mels=config_obj.data.n_mels), MelToImage()])
|
||||
transforms = Compose([NormalizeLocal(), ToTensor()])
|
||||
|
||||
dataset: Dataset = BinaryMasksDataset(config_obj.data.root, setting='test',
|
||||
mel_transforms=mel_transforms, transforms=transforms
|
||||
)
|
||||
# noinspection PyTypeChecker
|
||||
return DataLoader(dataset, batch_size=None, num_workers=0, shuffle=False)
|
||||
|
||||
|
||||
def restore_logger_and_model(config_obj):
|
||||
logger = MLogger(config_obj)
|
||||
model = SavedLightningModels().load_checkpoint(models_root_path=logger.log_dir)
|
||||
logger = Logger(config_obj)
|
||||
model = SavedLightningModels.load_checkpoint(models_root_path=logger.log_dir, n=-2)
|
||||
model = model.restore()
|
||||
|
||||
if torch.cuda.is_available():
|
||||
model.cuda()
|
||||
else:
|
||||
model.cpu()
|
||||
return model
|
||||
|
||||
|
||||
if __name__ == '__main__':
|
||||
from _paramters import main_arg_parser
|
||||
outpath = Path('output')
|
||||
model_type = 'BandwiseConvMultiheadClassifier'
|
||||
parameters = 'BCMC_9c70168a5711c269b33701f1650adfb9/'
|
||||
version = 'version_1'
|
||||
config_filename = 'config.ini'
|
||||
inference_out = 'manual_test_out.csv'
|
||||
|
||||
config = MConfig().read_argparser(main_arg_parser)
|
||||
test_dataset = prepare_dataset(config)
|
||||
config = MConfig()
|
||||
config.read_file((outpath / model_type / parameters / version / config_filename).open('r'))
|
||||
test_dataloader = prepare_dataloader(config)
|
||||
loaded_model = restore_logger_and_model(config)
|
||||
print("run model here and find a format to store the output")
|
||||
loaded_model.eval()
|
||||
|
||||
with (outpath / model_type / parameters / version / inference_out).open(mode='w') as outfile:
|
||||
outfile.write(f'file_name,prediction\n')
|
||||
|
||||
for batch in tqdm(test_dataloader, total=len(test_dataloader)):
|
||||
batch_x, file_name = batch
|
||||
y = loaded_model(batch_x.unsqueeze(0).to(device='cuda' if torch.cuda.is_available() else 'cpu')).main_out
|
||||
prediction = (y.squeeze() >= 0.5).int().item()
|
||||
prediction = 'clear' if prediction == V.CLEAR else 'mask'
|
||||
outfile.write(f'{file_name},{prediction}\n')
|
||||
print('Done')
|
||||
|
@ -0,0 +1,3 @@
|
||||
from models.bandwise_conv_multihead_classifier import BandwiseConvMultiheadClassifier
|
||||
from models.bandwise_conv_classifier import BandwiseConvClassifier
|
||||
from models.conv_classifier import ConvClassifier
|
@ -1,99 +0,0 @@
|
||||
from argparse import Namespace
|
||||
|
||||
from torch import nn
|
||||
from torch.nn import ModuleDict
|
||||
|
||||
from torchvision.transforms import Compose, ToTensor
|
||||
|
||||
from ml_lib.audio_toolset.audio_io import AudioToMel, NormalizeLocal, PowerToDB, MelToImage
|
||||
from ml_lib.modules.blocks import ConvModule
|
||||
from ml_lib.modules.utils import LightningBaseModule, Flatten, BaseModuleMixin_Dataloaders, HorizontalSplitter, \
|
||||
HorizontalMerger
|
||||
from models.module_mixins import BaseOptimizerMixin, BaseTrainMixin, BaseValMixin
|
||||
|
||||
|
||||
class BandwiseBinaryClassifier(BaseModuleMixin_Dataloaders,
|
||||
BaseTrainMixin,
|
||||
BaseValMixin,
|
||||
BaseOptimizerMixin,
|
||||
LightningBaseModule
|
||||
):
|
||||
|
||||
def __init__(self, hparams):
|
||||
super(BandwiseBinaryClassifier, self).__init__(hparams)
|
||||
|
||||
# Dataset and Dataloaders
|
||||
# =============================================================================
|
||||
# Transforms
|
||||
transforms = Compose([AudioToMel(n_mels=32), MelToImage(), ToTensor(), NormalizeLocal()])
|
||||
# Datasets
|
||||
from datasets.binar_masks import BinaryMasksDataset
|
||||
self.dataset = Namespace(
|
||||
**dict(
|
||||
train_dataset=BinaryMasksDataset(self.params.root, setting='train', transforms=transforms),
|
||||
val_dataset=BinaryMasksDataset(self.params.root, setting='devel', transforms=transforms),
|
||||
test_dataset=BinaryMasksDataset(self.params.root, setting='test', transforms=transforms),
|
||||
)
|
||||
)
|
||||
|
||||
# Model Paramters
|
||||
# =============================================================================
|
||||
# Additional parameters
|
||||
self.in_shape = self.dataset.train_dataset.sample_shape
|
||||
self.conv_filters = self.params.filters
|
||||
self.criterion = nn.BCELoss()
|
||||
self.n_band_sections = 5
|
||||
|
||||
# Modules
|
||||
self.split = HorizontalSplitter(self.in_shape, self.n_band_sections)
|
||||
self.conv_dict = ModuleDict()
|
||||
|
||||
self.conv_dict.update({f"conv_1_{band_section}":
|
||||
ConvModule(self.split.shape, self.conv_filters[0], 3, conv_stride=1, **self.params.module_kwargs)
|
||||
for band_section in range(self.n_band_sections)}
|
||||
)
|
||||
self.conv_dict.update({f"conv_2_{band_section}":
|
||||
ConvModule(self.conv_dict['conv_1_1'].shape, self.conv_filters[1], 3, conv_stride=1,
|
||||
**self.params.module_kwargs) for band_section in range(self.n_band_sections)}
|
||||
)
|
||||
self.conv_dict.update({f"conv_3_{band_section}":
|
||||
ConvModule(self.conv_dict['conv_2_1'].shape, self.conv_filters[2], 3, conv_stride=1,
|
||||
**self.params.module_kwargs)
|
||||
for band_section in range(self.n_band_sections)}
|
||||
)
|
||||
|
||||
self.merge = HorizontalMerger(self.conv_dict['conv_3_1'].shape, self.n_band_sections)
|
||||
|
||||
self.flat = Flatten(self.merge.shape)
|
||||
|
||||
self.full_1 = nn.Linear(self.flat.shape, self.params.lat_dim, self.params.bias)
|
||||
self.full_2 = nn.Linear(self.full_1.out_features, self.full_1.out_features // 2, self.params.bias)
|
||||
|
||||
self.full_out = nn.Linear(self.full_2.out_features, 1, self.params.bias)
|
||||
|
||||
# Utility Modules
|
||||
|
||||
self.dropout = nn.Dropout2d(self.params.dropout) if self.params.dropout else lambda x: x
|
||||
self.activation = self.params.activation()
|
||||
self.sigmoid = nn.Sigmoid()
|
||||
|
||||
def forward(self, batch, **kwargs):
|
||||
tensors = self.split(batch)
|
||||
for idx, tensor in enumerate(tensors):
|
||||
tensors[idx] = self.conv_dict[f"conv_1_{idx}"](tensor)
|
||||
for idx, tensor in enumerate(tensors):
|
||||
tensors[idx] = self.conv_dict[f"conv_2_{idx}"](tensor)
|
||||
for idx, tensor in enumerate(tensors):
|
||||
tensors[idx] = self.conv_dict[f"conv_3_{idx}"](tensor)
|
||||
|
||||
tensor = self.merge(tensors)
|
||||
tensor = self.flat(tensor)
|
||||
tensor = self.full_1(tensor)
|
||||
tensor = self.activation(tensor)
|
||||
tensor = self.dropout(tensor)
|
||||
tensor = self.full_2(tensor)
|
||||
tensor = self.activation(tensor)
|
||||
tensor = self.dropout(tensor)
|
||||
tensor = self.full_out(tensor)
|
||||
tensor = self.sigmoid(tensor)
|
||||
return tensor
|
86
models/bandwise_conv_classifier.py
Normal file
86
models/bandwise_conv_classifier.py
Normal file
@ -0,0 +1,86 @@
|
||||
from argparse import Namespace
|
||||
|
||||
from torch import nn
|
||||
from torch.nn import ModuleDict, ModuleList
|
||||
|
||||
from ml_lib.modules.blocks import ConvModule
|
||||
from ml_lib.modules.utils import (LightningBaseModule, HorizontalSplitter,
|
||||
HorizontalMerger)
|
||||
from util.module_mixins import (BaseOptimizerMixin, BaseTrainMixin, BaseValMixin, BinaryMaskDatasetFunction,
|
||||
BaseDataloadersMixin)
|
||||
|
||||
|
||||
class BandwiseConvClassifier(BinaryMaskDatasetFunction,
|
||||
BaseDataloadersMixin,
|
||||
BaseTrainMixin,
|
||||
BaseValMixin,
|
||||
BaseOptimizerMixin,
|
||||
LightningBaseModule
|
||||
):
|
||||
|
||||
def __init__(self, hparams):
|
||||
super(BandwiseConvClassifier, self).__init__(hparams)
|
||||
|
||||
# Dataset
|
||||
# =============================================================================
|
||||
self.dataset = self.build_dataset()
|
||||
|
||||
# Model Paramters
|
||||
# =============================================================================
|
||||
# Additional parameters
|
||||
self.in_shape = self.dataset.train_dataset.sample_shape
|
||||
self.conv_filters = self.params.filters
|
||||
self.criterion = nn.BCELoss()
|
||||
self.n_band_sections = 4
|
||||
|
||||
# Modules
|
||||
# =============================================================================
|
||||
self.split = HorizontalSplitter(self.in_shape, self.n_band_sections)
|
||||
self.conv_dict = ModuleDict()
|
||||
|
||||
self.conv_dict.update({f"conv_1_{band_section}":
|
||||
ConvModule(self.split.shape, self.conv_filters[0], 3, conv_stride=1, **self.params.module_kwargs)
|
||||
for band_section in range(self.n_band_sections)}
|
||||
)
|
||||
self.conv_dict.update({f"conv_2_{band_section}":
|
||||
ConvModule(self.conv_dict['conv_1_1'].shape, self.conv_filters[1], 3, conv_stride=1,
|
||||
**self.params.module_kwargs) for band_section in range(self.n_band_sections)}
|
||||
)
|
||||
self.conv_dict.update({f"conv_3_{band_section}":
|
||||
ConvModule(self.conv_dict['conv_2_1'].shape, self.conv_filters[2], 3, conv_stride=1,
|
||||
**self.params.module_kwargs)
|
||||
for band_section in range(self.n_band_sections)}
|
||||
)
|
||||
|
||||
self.merge = HorizontalMerger(self.conv_dict['conv_3_1'].shape, self.n_band_sections)
|
||||
|
||||
self.full_1 = nn.Linear(self.flat.shape, self.params.lat_dim, self.params.bias)
|
||||
self.full_2 = nn.Linear(self.full_1.out_features, self.full_1.out_features // 2, self.params.bias)
|
||||
|
||||
self.full_out = nn.Linear(self.full_2.out_features, 1, self.params.bias)
|
||||
|
||||
# Utility Modules
|
||||
self.dropout = nn.Dropout2d(self.params.dropout) if self.params.dropout else lambda x: x
|
||||
self.activation = self.params.activation()
|
||||
self.sigmoid = nn.Sigmoid()
|
||||
|
||||
def forward(self, batch, **kwargs):
|
||||
tensors = self.split(batch)
|
||||
for idx, tensor in enumerate(tensors):
|
||||
tensors[idx] = self.conv_dict[f"conv_1_{idx}"](tensor)
|
||||
for idx, tensor in enumerate(tensors):
|
||||
tensors[idx] = self.conv_dict[f"conv_2_{idx}"](tensor)
|
||||
for idx, tensor in enumerate(tensors):
|
||||
tensors[idx] = self.conv_dict[f"conv_3_{idx}"](tensor)
|
||||
|
||||
tensor = self.merge(tensors)
|
||||
tensor = self.flat(tensor)
|
||||
tensor = self.full_1(tensor)
|
||||
tensor = self.activation(tensor)
|
||||
tensor = self.dropout(tensor)
|
||||
tensor = self.full_2(tensor)
|
||||
tensor = self.activation(tensor)
|
||||
tensor = self.dropout(tensor)
|
||||
tensor = self.full_out(tensor)
|
||||
tensor = self.sigmoid(tensor)
|
||||
return Namespace(main_out=tensor)
|
107
models/bandwise_conv_multihead_classifier.py
Normal file
107
models/bandwise_conv_multihead_classifier.py
Normal file
@ -0,0 +1,107 @@
|
||||
from argparse import Namespace
|
||||
from collections import defaultdict
|
||||
|
||||
import torch
|
||||
from torch import nn
|
||||
from torch.nn import ModuleDict, ModuleList
|
||||
from torchcontrib.optim import SWA
|
||||
|
||||
from ml_lib.modules.blocks import ConvModule
|
||||
from ml_lib.modules.utils import (LightningBaseModule, Flatten, HorizontalSplitter)
|
||||
from util.module_mixins import (BaseOptimizerMixin, BaseTrainMixin, BaseValMixin, BinaryMaskDatasetFunction,
|
||||
BaseDataloadersMixin)
|
||||
|
||||
|
||||
class BandwiseConvMultiheadClassifier(BinaryMaskDatasetFunction,
|
||||
BaseDataloadersMixin,
|
||||
BaseTrainMixin,
|
||||
BaseValMixin,
|
||||
BaseOptimizerMixin,
|
||||
LightningBaseModule
|
||||
):
|
||||
|
||||
def training_step(self, batch_xy, batch_nb, *args, **kwargs):
|
||||
batch_x, batch_y = batch_xy
|
||||
y = self(batch_x)
|
||||
y, bands_y = y.main_out, y.bands
|
||||
bands_y_losses = [self.criterion(band_y, batch_y) for band_y in bands_y]
|
||||
return_dict = {f'band_{band_idx}_loss': band_y for band_idx, band_y in enumerate(bands_y_losses)}
|
||||
overall_loss = self.criterion(y, batch_y)
|
||||
combined_loss = overall_loss + torch.stack(bands_y_losses).sum()
|
||||
return_dict.update(loss=combined_loss, overall_loss=overall_loss)
|
||||
return return_dict
|
||||
|
||||
def validation_step(self, batch_xy, batch_idx, *args, **kwargs):
|
||||
batch_x, batch_y = batch_xy
|
||||
y = self(batch_x)
|
||||
y, bands_y = y.main_out, y.bands
|
||||
bands_y_losses = [self.criterion(band_y, batch_y) for band_y in bands_y]
|
||||
return_dict = {f'band_{band_idx}_val_loss': band_y for band_idx, band_y in enumerate(bands_y_losses)}
|
||||
overall_loss = self.criterion(y, batch_y)
|
||||
combined_loss = overall_loss + torch.stack(bands_y_losses).sum()
|
||||
|
||||
val_abs_loss = self.absolute_loss(y, batch_y)
|
||||
return_dict.update(val_bce_loss=combined_loss, val_abs_loss=val_abs_loss,
|
||||
batch_idx=batch_idx, y=y, batch_y=batch_y
|
||||
)
|
||||
return return_dict
|
||||
|
||||
def __init__(self, hparams):
|
||||
super(BandwiseConvMultiheadClassifier, self).__init__(hparams)
|
||||
|
||||
# Dataset
|
||||
# =============================================================================
|
||||
self.dataset = self.build_dataset()
|
||||
|
||||
# Model Paramters
|
||||
# =============================================================================
|
||||
# Additional parameters
|
||||
self.in_shape = self.dataset.train_dataset.sample_shape
|
||||
self.conv_filters = self.params.filters
|
||||
self.criterion = nn.BCELoss()
|
||||
self.n_band_sections = 8
|
||||
|
||||
# Modules
|
||||
# =============================================================================
|
||||
self.split = HorizontalSplitter(self.in_shape, self.n_band_sections)
|
||||
self.conv_dict = ModuleDict()
|
||||
|
||||
self.conv_dict.update({f"conv_1_{band_section}":
|
||||
ConvModule(self.split.shape, self.conv_filters[0], 3, conv_stride=1, **self.params.module_kwargs)
|
||||
for band_section in range(self.n_band_sections)}
|
||||
)
|
||||
self.conv_dict.update({f"conv_2_{band_section}":
|
||||
ConvModule(self.conv_dict['conv_1_1'].shape, self.conv_filters[1], 3, conv_stride=1,
|
||||
**self.params.module_kwargs) for band_section in range(self.n_band_sections)}
|
||||
)
|
||||
self.conv_dict.update({f"conv_3_{band_section}":
|
||||
ConvModule(self.conv_dict['conv_2_1'].shape, self.conv_filters[2], 3, conv_stride=1,
|
||||
**self.params.module_kwargs)
|
||||
for band_section in range(self.n_band_sections)}
|
||||
)
|
||||
|
||||
self.flat = Flatten(self.conv_dict['conv_3_1'].shape)
|
||||
self.bandwise_latent_list = ModuleList([
|
||||
nn.Linear(self.flat.shape, self.params.lat_dim, self.params.bias) for _ in range(self.n_band_sections)])
|
||||
self.bandwise_classifier_list = ModuleList([nn.Linear(self.params.lat_dim, 1, self.params.bias)
|
||||
for _ in range(self.n_band_sections)])
|
||||
|
||||
self.full_out = nn.Linear(self.n_band_sections, 1, self.params.bias)
|
||||
|
||||
# Utility Modules
|
||||
self.sigmoid = nn.Sigmoid()
|
||||
|
||||
def forward(self, batch, **kwargs):
|
||||
tensors = self.split(batch)
|
||||
for idx, tensor in enumerate(tensors):
|
||||
tensor = self.conv_dict[f"conv_1_{idx}"](tensor)
|
||||
tensor = self.conv_dict[f"conv_2_{idx}"](tensor)
|
||||
tensor = self.conv_dict[f"conv_3_{idx}"](tensor)
|
||||
tensor = self.flat(tensor)
|
||||
tensor = self.bandwise_latent_list[idx](tensor)
|
||||
tensor = self.bandwise_classifier_list[idx](tensor)
|
||||
tensors[idx] = self.sigmoid(tensor)
|
||||
tensor = torch.cat(tensors, dim=1)
|
||||
tensor = self.full_out(tensor)
|
||||
tensor = self.sigmoid(tensor)
|
||||
return Namespace(main_out=tensor, bands=tensors)
|
@ -1,79 +0,0 @@
|
||||
from argparse import Namespace
|
||||
|
||||
from torch import nn
|
||||
|
||||
from torchvision.transforms import Compose, ToTensor
|
||||
|
||||
from ml_lib.audio_toolset.audio_io import AudioToMel, NormalizeLocal, PowerToDB, MelToImage
|
||||
from ml_lib.modules.blocks import ConvModule
|
||||
from ml_lib.modules.utils import LightningBaseModule, Flatten, BaseModuleMixin_Dataloaders
|
||||
from models.module_mixins import BaseOptimizerMixin, BaseTrainMixin, BaseValMixin
|
||||
|
||||
|
||||
class BinaryClassifier(BaseModuleMixin_Dataloaders,
|
||||
BaseTrainMixin,
|
||||
BaseValMixin,
|
||||
BaseOptimizerMixin,
|
||||
LightningBaseModule
|
||||
):
|
||||
|
||||
def __init__(self, hparams):
|
||||
super(BinaryClassifier, self).__init__(hparams)
|
||||
|
||||
# Dataset and Dataloaders
|
||||
# =============================================================================
|
||||
# Transforms
|
||||
transforms = Compose([AudioToMel(), MelToImage(), ToTensor(), NormalizeLocal()])
|
||||
# Datasets
|
||||
from datasets.binar_masks import BinaryMasksDataset
|
||||
self.dataset = Namespace(
|
||||
**dict(
|
||||
train_dataset=BinaryMasksDataset(self.params.root, setting='train', transforms=transforms),
|
||||
val_dataset=BinaryMasksDataset(self.params.root, setting='devel', transforms=transforms),
|
||||
test_dataset=BinaryMasksDataset(self.params.root, setting='test', transforms=transforms),
|
||||
)
|
||||
)
|
||||
|
||||
# Model Paramters
|
||||
# =============================================================================
|
||||
# Additional parameters
|
||||
self.in_shape = self.dataset.train_dataset.sample_shape
|
||||
self.conv_filters = self.params.filters
|
||||
self.criterion = nn.BCELoss()
|
||||
|
||||
# Modules with Parameters
|
||||
self.conv_1 = ConvModule(self.in_shape, self.conv_filters[0], 3, conv_stride=2, **self.params.module_kwargs)
|
||||
self.conv_1b = ConvModule(self.conv_1.shape, self.conv_filters[0], 1, conv_stride=1, **self.params.module_kwargs)
|
||||
self.conv_2 = ConvModule(self.conv_1b.shape, self.conv_filters[1], 5, conv_stride=2, **self.params.module_kwargs)
|
||||
self.conv_2b = ConvModule(self.conv_2.shape, self.conv_filters[1], 1, conv_stride=1, **self.params.module_kwargs)
|
||||
self.conv_3 = ConvModule(self.conv_2b.shape, self.conv_filters[2], 7, conv_stride=2, **self.params.module_kwargs)
|
||||
self.conv_3b = ConvModule(self.conv_3.shape, self.conv_filters[2], 1, conv_stride=1, **self.params.module_kwargs)
|
||||
|
||||
self.flat = Flatten(self.conv_3b.shape)
|
||||
self.full_1 = nn.Linear(self.flat.shape, self.params.lat_dim, self.params.bias)
|
||||
self.full_2 = nn.Linear(self.full_1.out_features, self.full_1.out_features // 2, self.params.bias)
|
||||
|
||||
self.full_out = nn.Linear(self.full_2.out_features, 1, self.params.bias)
|
||||
|
||||
# Utility Modules
|
||||
self.dropout = nn.Dropout2d(self.params.dropout) if self.params.dropout else lambda x: x
|
||||
self.activation = self.params.activation()
|
||||
self.sigmoid = nn.Sigmoid()
|
||||
|
||||
def forward(self, batch, **kwargs):
|
||||
tensor = self.conv_1(batch)
|
||||
tensor = self.conv_1b(tensor)
|
||||
tensor = self.conv_2(tensor)
|
||||
tensor = self.conv_2b(tensor)
|
||||
tensor = self.conv_3(tensor)
|
||||
tensor = self.conv_3b(tensor)
|
||||
tensor = self.flat(tensor)
|
||||
tensor = self.full_1(tensor)
|
||||
tensor = self.activation(tensor)
|
||||
tensor = self.dropout(tensor)
|
||||
tensor = self.full_2(tensor)
|
||||
tensor = self.activation(tensor)
|
||||
tensor = self.dropout(tensor)
|
||||
tensor = self.full_out(tensor)
|
||||
tensor = self.sigmoid(tensor)
|
||||
return tensor
|
75
models/conv_classifier.py
Normal file
75
models/conv_classifier.py
Normal file
@ -0,0 +1,75 @@
|
||||
from argparse import Namespace
|
||||
|
||||
from torch import nn
|
||||
from torch.nn import ModuleList
|
||||
|
||||
from ml_lib.modules.blocks import ConvModule
|
||||
from ml_lib.modules.utils import LightningBaseModule, Flatten
|
||||
from util.module_mixins import (BaseOptimizerMixin, BaseTrainMixin, BaseValMixin, BinaryMaskDatasetFunction,
|
||||
BaseDataloadersMixin)
|
||||
|
||||
|
||||
class ConvClassifier(BinaryMaskDatasetFunction,
|
||||
BaseDataloadersMixin,
|
||||
BaseTrainMixin,
|
||||
BaseValMixin,
|
||||
BaseOptimizerMixin,
|
||||
LightningBaseModule
|
||||
):
|
||||
|
||||
def __init__(self, hparams):
|
||||
super(ConvClassifier, self).__init__(hparams)
|
||||
|
||||
# Dataset
|
||||
# =============================================================================
|
||||
self.dataset = self.build_dataset()
|
||||
|
||||
# Model Paramters
|
||||
# =============================================================================
|
||||
# Additional parameters
|
||||
self.in_shape = self.dataset.train_dataset.sample_shape
|
||||
self.conv_filters = self.params.filters
|
||||
self.criterion = nn.BCELoss()
|
||||
|
||||
# Modules with Parameters
|
||||
self.conv_list = ModuleList()
|
||||
last_shape = self.in_shape
|
||||
k = 3 # Base Kernel Value
|
||||
for filters in self.conv_filters:
|
||||
self.conv_list.append(ConvModule(last_shape, filters, (k, k*2), conv_stride=2, **self.params.module_kwargs))
|
||||
last_shape = self.conv_list[-1].shape
|
||||
self.conv_list.appen(ConvModule(last_shape, filters, 1, conv_stride=1, **self.params.module_kwargs))
|
||||
last_shape = self.conv_list[-1].shape
|
||||
self.conv_list.appen(ConvModule(last_shape, 1, 1, conv_stride=1, **self.params.module_kwargs))
|
||||
last_shape = self.conv_list[-1].shape
|
||||
k = k+2
|
||||
|
||||
self.flat = Flatten(self.conv_list[-1].shape)
|
||||
self.full_1 = nn.Linear(self.flat.shape, self.params.lat_dim, self.params.bias)
|
||||
self.full_2 = nn.Linear(self.full_1.out_features, self.full_1.out_features * 2, self.params.bias)
|
||||
self.full_3 = nn.Linear(self.full_2.out_features, self.full_2.out_features // 2, self.params.bias)
|
||||
|
||||
self.full_out = nn.Linear(self.full_3.out_features, 1, self.params.bias)
|
||||
|
||||
# Utility Modules
|
||||
self.dropout = nn.Dropout2d(self.params.dropout) if self.params.dropout else lambda x: x
|
||||
self.activation = self.params.activation()
|
||||
self.sigmoid = nn.Sigmoid()
|
||||
|
||||
def forward(self, batch, **kwargs):
|
||||
tensor = batch
|
||||
for conv in self.conv_list:
|
||||
tensor = conv(tensor)
|
||||
tensor = self.flat(tensor)
|
||||
tensor = self.full_1(tensor)
|
||||
tensor = self.activation(tensor)
|
||||
tensor = self.dropout(tensor)
|
||||
tensor = self.full_2(tensor)
|
||||
tensor = self.activation(tensor)
|
||||
tensor = self.dropout(tensor)
|
||||
tensor = self.full_3(tensor)
|
||||
tensor = self.activation(tensor)
|
||||
tensor = self.dropout(tensor)
|
||||
tensor = self.full_out(tensor)
|
||||
tensor = self.sigmoid(tensor)
|
||||
return Namespace(main_out=tensor)
|
55
models/ensemble.py
Normal file
55
models/ensemble.py
Normal file
@ -0,0 +1,55 @@
|
||||
from argparse import Namespace
|
||||
from pathlib import Path
|
||||
|
||||
import torch
|
||||
from torch import nn
|
||||
from torch.nn import ModuleList
|
||||
|
||||
from ml_lib.modules.utils import LightningBaseModule
|
||||
from ml_lib.utils.config import Config
|
||||
from ml_lib.utils.model_io import SavedLightningModels
|
||||
from util.module_mixins import (BaseOptimizerMixin, BaseTrainMixin, BaseValMixin, BinaryMaskDatasetFunction,
|
||||
BaseDataloadersMixin)
|
||||
|
||||
|
||||
class Ensemble(BinaryMaskDatasetFunction,
|
||||
BaseDataloadersMixin,
|
||||
BaseTrainMixin,
|
||||
BaseValMixin,
|
||||
BaseOptimizerMixin,
|
||||
LightningBaseModule
|
||||
):
|
||||
|
||||
def __init__(self, hparams):
|
||||
super(Ensemble, self).__init__(hparams)
|
||||
|
||||
# Dataset
|
||||
# =============================================================================
|
||||
self.dataset = self.build_dataset()
|
||||
|
||||
# Model Paramters
|
||||
# =============================================================================
|
||||
# Additional parameters
|
||||
self.in_shape = self.dataset.train_dataset.sample_shape
|
||||
self.conv_filters = self.params.filters
|
||||
self.criterion = nn.BCELoss()
|
||||
|
||||
# Pre_trained_models
|
||||
out_path = Path('output') / self.params.secondary_type
|
||||
# exp_paths = list(out_path.rglob(f'*{self.params.exp_fingerprint}'))
|
||||
exp_paths = list(out_path.rglob('*e87b8f455ba134504b1ae17114ac2a2a'))
|
||||
config_ini_files = sum([list(exp_path.rglob('config.ini')) for exp_path in exp_paths], [])
|
||||
|
||||
self.model_list = ModuleList()
|
||||
|
||||
configs = [Config() for _ in range(len(config_ini_files))]
|
||||
for config, ini_file in zip(configs, config_ini_files):
|
||||
config.read_file(ini_file.open('r'))
|
||||
model = SavedLightningModels.load_checkpoint(models_root_path=config.exp_path / config.version).restore()
|
||||
self.model_list.append(model)
|
||||
|
||||
def forward(self, batch, **kwargs):
|
||||
ys = [model(batch).main_out for model in self.model_list]
|
||||
tensor = torch.stack(ys).mean(dim=0)
|
||||
|
||||
return Namespace(main_out=tensor)
|
@ -1,55 +0,0 @@
|
||||
import sklearn
|
||||
import torch
|
||||
import numpy as np
|
||||
from torch.nn import L1Loss
|
||||
from torch.optim import Adam
|
||||
|
||||
|
||||
class BaseOptimizerMixin:
|
||||
|
||||
def configure_optimizers(self):
|
||||
return Adam(params=self.parameters(), lr=self.params.lr)
|
||||
|
||||
|
||||
class BaseTrainMixin:
|
||||
|
||||
def training_step(self, batch_xy, batch_nb, *args, **kwargs):
|
||||
batch_x, batch_y = batch_xy
|
||||
y = self(batch_x)
|
||||
loss = self.criterion(y, batch_y)
|
||||
return dict(loss=loss)
|
||||
|
||||
def training_epoch_end(self, outputs):
|
||||
mean_train_loss = torch.mean(torch.stack([output['loss'] for output in outputs]))
|
||||
return dict(log=dict(mean_train_loss=mean_train_loss))
|
||||
|
||||
|
||||
class BaseValMixin:
|
||||
|
||||
absolute_loss = L1Loss()
|
||||
|
||||
def validation_step(self, batch_xy, batch_idx, *args, **kwargs):
|
||||
batch_x, batch_y = batch_xy
|
||||
y = self(batch_x)
|
||||
val_loss = self.criterion(y, batch_y)
|
||||
absolute_error = self.absolute_loss(y, batch_y)
|
||||
return dict(val_loss=val_loss, absolute_error=absolute_error, batch_idx=batch_idx, y=y, batch_y=batch_y)
|
||||
|
||||
def validation_epoch_end(self, outputs):
|
||||
overall_val_loss = torch.mean(torch.stack([output['val_loss'] for output in outputs]))
|
||||
mean_absolute_error = torch.mean(torch.stack([output['absolute_error'] for output in outputs]))
|
||||
|
||||
# UnweightedAverageRecall
|
||||
y_true = torch.cat([output['batch_y'] for output in outputs]) .cpu().numpy()
|
||||
y_pred = torch.cat([output['y'] for output in outputs]).squeeze().cpu().numpy()
|
||||
|
||||
y_pred = (y_pred >= 0.5).astype(np.float32)
|
||||
|
||||
uar_score = sklearn.metrics.recall_score(y_true, y_pred, labels=[0, 1], average='macro',
|
||||
sample_weight=None, zero_division='warn')
|
||||
|
||||
return dict(
|
||||
log=dict(mean_val_loss=overall_val_loss,
|
||||
mean_absolute_error=mean_absolute_error,
|
||||
uar_score=uar_score)
|
||||
)
|
@ -1,6 +1,8 @@
|
||||
from ml_lib.utils.config import Config
|
||||
from models.binary_classifier import BinaryClassifier
|
||||
from models.bandwise_binary_classifier import BandwiseBinaryClassifier
|
||||
from models.conv_classifier import ConvClassifier
|
||||
from models.bandwise_conv_classifier import BandwiseConvClassifier
|
||||
from models.bandwise_conv_multihead_classifier import BandwiseConvMultiheadClassifier
|
||||
from models.ensemble import Ensemble
|
||||
|
||||
|
||||
class MConfig(Config):
|
||||
@ -8,5 +10,8 @@ class MConfig(Config):
|
||||
|
||||
@property
|
||||
def _model_map(self):
|
||||
return dict(BinaryClassifier=BinaryClassifier,
|
||||
BandwiseBinaryClassifier=BandwiseBinaryClassifier)
|
||||
return dict(ConvClassifier=ConvClassifier,
|
||||
BandwiseConvClassifier=BandwiseConvClassifier,
|
||||
BandwiseConvMultiheadClassifier=BandwiseConvMultiheadClassifier,
|
||||
Ensemble=Ensemble,
|
||||
)
|
||||
|
@ -1,11 +0,0 @@
|
||||
from pathlib import Path
|
||||
|
||||
from ml_lib.utils.logging import Logger
|
||||
|
||||
|
||||
class MLogger(Logger):
|
||||
|
||||
@property
|
||||
def outpath(self):
|
||||
# FIXME: Specify a special path
|
||||
return Path(self.config.train.outpath)
|
147
util/module_mixins.py
Normal file
147
util/module_mixins.py
Normal file
@ -0,0 +1,147 @@
|
||||
from collections import defaultdict
|
||||
|
||||
from abc import ABC
|
||||
from argparse import Namespace
|
||||
|
||||
import sklearn
|
||||
import torch
|
||||
import numpy as np
|
||||
from torch.nn import L1Loss
|
||||
from torch.optim import Adam
|
||||
from torch.utils.data import DataLoader
|
||||
from torchcontrib.optim import SWA
|
||||
from torchvision.transforms import Compose, RandomApply
|
||||
|
||||
from ml_lib.audio_toolset.audio_augmentation import NoiseInjection, LoudnessManipulator, ShiftTime
|
||||
from ml_lib.audio_toolset.audio_io import AudioToMel, MelToImage, NormalizeLocal
|
||||
from ml_lib.utils.transforms import ToTensor
|
||||
|
||||
import variables as V
|
||||
|
||||
|
||||
class BaseOptimizerMixin:
|
||||
|
||||
def configure_optimizers(self):
|
||||
opt = Adam(params=self.parameters(), lr=self.params.lr)
|
||||
if self.params.sto_weight_avg:
|
||||
opt = SWA(opt, swa_start=10, swa_freq=5, swa_lr=0.05)
|
||||
return opt
|
||||
|
||||
def on_train_end(self):
|
||||
for opt in self.trainer.optimizers:
|
||||
if isinstance(opt, SWA):
|
||||
opt.swap_swa_sgd()
|
||||
|
||||
def on_epoch_end(self):
|
||||
if False: # FIXME: Pass a new parameter to model args.
|
||||
if self.current_epoch % self.params.opt_reset_interval == 0:
|
||||
for opt in self.trainer.optimizers:
|
||||
opt.state = defaultdict(dict)
|
||||
|
||||
|
||||
class BaseTrainMixin:
|
||||
|
||||
def training_step(self, batch_xy, batch_nb, *args, **kwargs):
|
||||
batch_x, batch_y = batch_xy
|
||||
y = self(batch_x).main_out
|
||||
loss = self.criterion(y, batch_y)
|
||||
return dict(loss=loss)
|
||||
|
||||
def training_epoch_end(self, outputs):
|
||||
keys = list(outputs[0].keys())
|
||||
|
||||
summary_dict = dict(log={f'mean_{key}': torch.mean(torch.stack([output[key]
|
||||
for output in outputs]))
|
||||
for key in keys if 'loss' in key})
|
||||
return summary_dict
|
||||
|
||||
|
||||
class BaseValMixin:
|
||||
|
||||
absolute_loss = L1Loss()
|
||||
|
||||
def validation_step(self, batch_xy, batch_idx, *args, **kwargs):
|
||||
batch_x, batch_y = batch_xy
|
||||
y = self(batch_x).main_out
|
||||
val_bce_loss = self.criterion(y, batch_y)
|
||||
val_abs_loss = self.absolute_loss(y, batch_y)
|
||||
return dict(val_bce_loss=val_bce_loss, val_abs_loss=val_abs_loss,
|
||||
batch_idx=batch_idx, y=y, batch_y=batch_y
|
||||
)
|
||||
|
||||
def validation_epoch_end(self, outputs):
|
||||
keys = list(outputs[0].keys())
|
||||
|
||||
summary_dict = dict(log={f'mean_{key}': torch.mean(torch.stack([output[key]
|
||||
for output in outputs]))
|
||||
for key in keys if 'loss' in key})
|
||||
|
||||
# UnweightedAverageRecall
|
||||
y_true = torch.cat([output['batch_y'] for output in outputs]) .cpu().numpy()
|
||||
y_pred = torch.cat([output['y'] for output in outputs]).squeeze().cpu().numpy()
|
||||
|
||||
y_pred = (y_pred >= 0.5).astype(np.float32)
|
||||
|
||||
uar_score = sklearn.metrics.recall_score(y_true, y_pred, labels=[0, 1], average='macro',
|
||||
sample_weight=None, zero_division='warn')
|
||||
summary_dict['log'].update(uar_score=uar_score)
|
||||
return summary_dict
|
||||
|
||||
|
||||
class BinaryMaskDatasetFunction:
|
||||
|
||||
def build_dataset(self):
|
||||
|
||||
# Dataset
|
||||
# =============================================================================
|
||||
# Mel Transforms
|
||||
mel_transforms = Compose([
|
||||
# Audio to Mel Transformations
|
||||
AudioToMel(n_mels=self.params.n_mels), MelToImage()])
|
||||
# Data Augmentations
|
||||
aug_transforms = Compose([
|
||||
RandomApply([
|
||||
NoiseInjection(self.params.noise_ratio),
|
||||
LoudnessManipulator(self.params.loudness_ratio),
|
||||
ShiftTime(self.params.shift_ratio)], p=0.5),
|
||||
# Utility
|
||||
NormalizeLocal(), ToTensor()
|
||||
])
|
||||
val_transforms = Compose([NormalizeLocal(), ToTensor()])
|
||||
|
||||
# Datasets
|
||||
from datasets.binar_masks import BinaryMasksDataset
|
||||
dataset = Namespace(
|
||||
**dict(
|
||||
train_dataset=BinaryMasksDataset(self.params.root, setting=V.DATA_OPTIONS.train, mixup=self.params.mixup,
|
||||
mel_transforms=mel_transforms, transforms=aug_transforms),
|
||||
val_dataset=BinaryMasksDataset(self.params.root, setting=V.DATA_OPTIONS.devel,
|
||||
mel_transforms=mel_transforms, transforms=val_transforms),
|
||||
test_dataset=BinaryMasksDataset(self.params.root, setting=V.DATA_OPTIONS.test,
|
||||
mel_transforms=mel_transforms, transforms=val_transforms),
|
||||
)
|
||||
)
|
||||
return dataset
|
||||
|
||||
|
||||
class BaseDataloadersMixin(ABC):
|
||||
|
||||
# Dataloaders
|
||||
# ================================================================================
|
||||
# Train Dataloader
|
||||
def train_dataloader(self):
|
||||
return DataLoader(dataset=self.dataset.train_dataset, shuffle=True,
|
||||
batch_size=self.params.batch_size,
|
||||
num_workers=self.params.worker)
|
||||
|
||||
# Test Dataloader
|
||||
def test_dataloader(self):
|
||||
return DataLoader(dataset=self.dataset.test_dataset, shuffle=False,
|
||||
batch_size=self.params.batch_size,
|
||||
num_workers=self.params.worker)
|
||||
|
||||
# Validation Dataloader
|
||||
def val_dataloader(self):
|
||||
return DataLoader(dataset=self.dataset.val_dataset, shuffle=True,
|
||||
batch_size=self.params.batch_size,
|
||||
num_workers=self.params.worker)
|
@ -1,6 +1,8 @@
|
||||
# Labels
|
||||
from argparse import Namespace
|
||||
|
||||
CLEAR = 0
|
||||
MASK = 1
|
||||
|
||||
# Dataset Options
|
||||
DATA_OPTIONS = ['test', 'devel', 'train']
|
||||
DATA_OPTIONS = Namespace(test='test', devel='devel', train='train')
|
||||
|
Loading…
x
Reference in New Issue
Block a user