Files
masks_augments_compare-21/models/conv_classifier.py

76 lines
3.1 KiB
Python

from argparse import Namespace
from torch import nn
from torch.nn import ModuleList
from ml_lib.modules.blocks import ConvModule
from ml_lib.modules.utils import LightningBaseModule, Flatten
from util.module_mixins import (BaseOptimizerMixin, BaseTrainMixin, BaseValMixin, BinaryMaskDatasetFunction,
BaseDataloadersMixin)
class ConvClassifier(BinaryMaskDatasetFunction,
BaseDataloadersMixin,
BaseTrainMixin,
BaseValMixin,
BaseOptimizerMixin,
LightningBaseModule
):
def __init__(self, hparams):
super(ConvClassifier, self).__init__(hparams)
# Dataset
# =============================================================================
self.dataset = self.build_dataset()
# Model Paramters
# =============================================================================
# Additional parameters
self.in_shape = self.dataset.train_dataset.sample_shape
self.conv_filters = self.params.filters
self.criterion = nn.BCELoss()
# Modules with Parameters
self.conv_list = ModuleList()
last_shape = self.in_shape
k = 3 # Base Kernel Value
for filters in self.conv_filters:
self.conv_list.append(ConvModule(last_shape, filters, (k, k*2), conv_stride=2, **self.params.module_kwargs))
last_shape = self.conv_list[-1].shape
self.conv_list.appen(ConvModule(last_shape, filters, 1, conv_stride=1, **self.params.module_kwargs))
last_shape = self.conv_list[-1].shape
self.conv_list.appen(ConvModule(last_shape, 1, 1, conv_stride=1, **self.params.module_kwargs))
last_shape = self.conv_list[-1].shape
k = k+2
self.flat = Flatten(self.conv_list[-1].shape)
self.full_1 = nn.Linear(self.flat.shape, self.params.lat_dim, self.params.bias)
self.full_2 = nn.Linear(self.full_1.out_features, self.full_1.out_features * 2, self.params.bias)
self.full_3 = nn.Linear(self.full_2.out_features, self.full_2.out_features // 2, self.params.bias)
self.full_out = nn.Linear(self.full_3.out_features, 1, self.params.bias)
# Utility Modules
self.dropout = nn.Dropout2d(self.params.dropout) if self.params.dropout else lambda x: x
self.activation = self.params.activation()
self.sigmoid = nn.Sigmoid()
def forward(self, batch, **kwargs):
tensor = batch
for conv in self.conv_list:
tensor = conv(tensor)
tensor = self.flat(tensor)
tensor = self.full_1(tensor)
tensor = self.activation(tensor)
tensor = self.dropout(tensor)
tensor = self.full_2(tensor)
tensor = self.activation(tensor)
tensor = self.dropout(tensor)
tensor = self.full_3(tensor)
tensor = self.activation(tensor)
tensor = self.dropout(tensor)
tensor = self.full_out(tensor)
tensor = self.sigmoid(tensor)
return Namespace(main_out=tensor)