Parameter Adjustmens and Ensemble Model Implementation
This commit is contained in:
75
models/conv_classifier.py
Normal file
75
models/conv_classifier.py
Normal file
@@ -0,0 +1,75 @@
|
||||
from argparse import Namespace
|
||||
|
||||
from torch import nn
|
||||
from torch.nn import ModuleList
|
||||
|
||||
from ml_lib.modules.blocks import ConvModule
|
||||
from ml_lib.modules.utils import LightningBaseModule, Flatten
|
||||
from util.module_mixins import (BaseOptimizerMixin, BaseTrainMixin, BaseValMixin, BinaryMaskDatasetFunction,
|
||||
BaseDataloadersMixin)
|
||||
|
||||
|
||||
class ConvClassifier(BinaryMaskDatasetFunction,
|
||||
BaseDataloadersMixin,
|
||||
BaseTrainMixin,
|
||||
BaseValMixin,
|
||||
BaseOptimizerMixin,
|
||||
LightningBaseModule
|
||||
):
|
||||
|
||||
def __init__(self, hparams):
|
||||
super(ConvClassifier, self).__init__(hparams)
|
||||
|
||||
# Dataset
|
||||
# =============================================================================
|
||||
self.dataset = self.build_dataset()
|
||||
|
||||
# Model Paramters
|
||||
# =============================================================================
|
||||
# Additional parameters
|
||||
self.in_shape = self.dataset.train_dataset.sample_shape
|
||||
self.conv_filters = self.params.filters
|
||||
self.criterion = nn.BCELoss()
|
||||
|
||||
# Modules with Parameters
|
||||
self.conv_list = ModuleList()
|
||||
last_shape = self.in_shape
|
||||
k = 3 # Base Kernel Value
|
||||
for filters in self.conv_filters:
|
||||
self.conv_list.append(ConvModule(last_shape, filters, (k, k*2), conv_stride=2, **self.params.module_kwargs))
|
||||
last_shape = self.conv_list[-1].shape
|
||||
self.conv_list.appen(ConvModule(last_shape, filters, 1, conv_stride=1, **self.params.module_kwargs))
|
||||
last_shape = self.conv_list[-1].shape
|
||||
self.conv_list.appen(ConvModule(last_shape, 1, 1, conv_stride=1, **self.params.module_kwargs))
|
||||
last_shape = self.conv_list[-1].shape
|
||||
k = k+2
|
||||
|
||||
self.flat = Flatten(self.conv_list[-1].shape)
|
||||
self.full_1 = nn.Linear(self.flat.shape, self.params.lat_dim, self.params.bias)
|
||||
self.full_2 = nn.Linear(self.full_1.out_features, self.full_1.out_features * 2, self.params.bias)
|
||||
self.full_3 = nn.Linear(self.full_2.out_features, self.full_2.out_features // 2, self.params.bias)
|
||||
|
||||
self.full_out = nn.Linear(self.full_3.out_features, 1, self.params.bias)
|
||||
|
||||
# Utility Modules
|
||||
self.dropout = nn.Dropout2d(self.params.dropout) if self.params.dropout else lambda x: x
|
||||
self.activation = self.params.activation()
|
||||
self.sigmoid = nn.Sigmoid()
|
||||
|
||||
def forward(self, batch, **kwargs):
|
||||
tensor = batch
|
||||
for conv in self.conv_list:
|
||||
tensor = conv(tensor)
|
||||
tensor = self.flat(tensor)
|
||||
tensor = self.full_1(tensor)
|
||||
tensor = self.activation(tensor)
|
||||
tensor = self.dropout(tensor)
|
||||
tensor = self.full_2(tensor)
|
||||
tensor = self.activation(tensor)
|
||||
tensor = self.dropout(tensor)
|
||||
tensor = self.full_3(tensor)
|
||||
tensor = self.activation(tensor)
|
||||
tensor = self.dropout(tensor)
|
||||
tensor = self.full_out(tensor)
|
||||
tensor = self.sigmoid(tensor)
|
||||
return Namespace(main_out=tensor)
|
||||
Reference in New Issue
Block a user