inference restored
This commit is contained in:
parent
ca1599e17b
commit
511b8064cd
@ -32,11 +32,11 @@ main_arg_parser.add_argument("--data_stretch", type=strtobool, default=True, hel
|
||||
|
||||
# Transformation Parameters
|
||||
main_arg_parser.add_argument("--data_loudness_ratio", type=float, default=0, help="") # 0.4
|
||||
main_arg_parser.add_argument("--data_shift_ratio", type=float, default=0, help="") # 0.3
|
||||
main_arg_parser.add_argument("--data_shift_ratio", type=float, default=0.3, help="") # 0.3
|
||||
main_arg_parser.add_argument("--data_noise_ratio", type=float, default=0, help="") # 0.4
|
||||
main_arg_parser.add_argument("--data_mask_ratio", type=float, default=0, help="") # 0.2
|
||||
main_arg_parser.add_argument("--data_speed_ratio", type=float, default=0.3, help="") # 0.3
|
||||
main_arg_parser.add_argument("--data_speed_factor", type=float, default=0.7, help="") # 0.7
|
||||
main_arg_parser.add_argument("--data_speed_ratio", type=float, default=0, help="") # 0.3
|
||||
main_arg_parser.add_argument("--data_speed_factor", type=float, default=0, help="") # 0.7
|
||||
|
||||
# Model Parameters
|
||||
main_arg_parser.add_argument("--model_type", type=str, default="RCC", help="")
|
||||
|
@ -27,7 +27,6 @@ from datasets.binar_masks import BinaryMasksDataset
|
||||
|
||||
def prepare_dataloader(config_obj):
|
||||
mel_transforms = Compose([
|
||||
Speed(0, 0),
|
||||
AudioToMel(sr=config_obj.data.sr, n_mels=config_obj.data.n_mels, n_fft=config_obj.data.n_fft,
|
||||
hop_length=config_obj.data.hop_length),
|
||||
MelToImage()])
|
||||
@ -40,16 +39,15 @@ def prepare_dataloader(config_obj):
|
||||
NormalizeLocal(), ToTensor()
|
||||
])
|
||||
|
||||
dataset: Dataset = BinaryMasksDataset(config_obj.data.root, setting='train',
|
||||
mel_transforms=mel_transforms, transforms=aug_transforms
|
||||
dataset: Dataset = BinaryMasksDataset(config_obj.data.root, setting='test',
|
||||
mel_transforms=mel_transforms, transforms=transforms
|
||||
)
|
||||
# noinspection PyTypeChecker
|
||||
return DataLoader(dataset, batch_size=None, num_workers=0, shuffle=False)
|
||||
|
||||
|
||||
def restore_logger_and_model(config_obj):
|
||||
logger = Logger(config_obj)
|
||||
model = SavedLightningModels.load_checkpoint(models_root_path=logger.log_dir, n=-2)
|
||||
def restore_logger_and_model(log_dir):
|
||||
model = SavedLightningModels.load_checkpoint(models_root_path=log_dir, n=-2)
|
||||
model = model.restore()
|
||||
if torch.cuda.is_available():
|
||||
model.cuda()
|
||||
@ -63,23 +61,18 @@ if __name__ == '__main__':
|
||||
model_type = 'CC'
|
||||
parameters = 'CC_213adb16e46592c5a405abfbd693835e/'
|
||||
version = 'version_41'
|
||||
model_path = Path('/home/steffen/projects/inter_challenge_2020/output/CC/CC_fd2020a7ead9d5c80609a7364741f24b/version_40')
|
||||
config_filename = 'config.ini'
|
||||
inference_out = 'manual_test_out.csv'
|
||||
|
||||
config = MConfig()
|
||||
config.read_file((outpath / model_type / parameters / version / config_filename).open('r'))
|
||||
config.read_file((Path(model_path) / config_filename).open('r'))
|
||||
test_dataloader = prepare_dataloader(config)
|
||||
p = Plotter(outpath)
|
||||
from matplotlib import pyplot as plt
|
||||
|
||||
d = test_dataloader.dataset[100][0].squeeze()
|
||||
plt.imshow(d)
|
||||
p.save_current_figure('100')
|
||||
|
||||
loaded_model = restore_logger_and_model(config)
|
||||
loaded_model = restore_logger_and_model(model_path)
|
||||
loaded_model.eval()
|
||||
|
||||
with (outpath / model_type / parameters / version / inference_out).open(mode='w') as outfile:
|
||||
with (model_path / inference_out).open(mode='w') as outfile:
|
||||
outfile.write(f'file_name,prediction\n')
|
||||
|
||||
for batch in tqdm(test_dataloader, total=len(test_dataloader)):
|
||||
|
@ -16,6 +16,8 @@ if __name__ == '__main__':
|
||||
continue
|
||||
out_file = (model_path / metric_file_name)
|
||||
for paramter_configuration in model_path.iterdir():
|
||||
if not model_path.is_dir():
|
||||
continue
|
||||
uar_scores = defaultdict(list)
|
||||
for metric_file in paramter_configuration.rglob(metric_file_name):
|
||||
with metric_file.open('r') as f:
|
||||
@ -37,7 +39,7 @@ if __name__ == '__main__':
|
||||
metric_dict[header].append(value)
|
||||
for score, func in zip(['mean', 'max', 'median', 'std'], [np.mean, np.max, np.median, np.std]):
|
||||
try:
|
||||
uar_scores[score].append(func(np.asarray(metric_dict['uar_score'])).round(2))
|
||||
uar_scores[score].append(round(func(np.asarray(metric_dict['uar_score'])) * 100, 2))
|
||||
except ValueError as e:
|
||||
print(e)
|
||||
pass
|
||||
|
Loading…
x
Reference in New Issue
Block a user