From 511b8064cd69479379fb9377fd52df944a59eee8 Mon Sep 17 00:00:00 2001 From: steffen Date: Sat, 16 May 2020 08:18:27 +0200 Subject: [PATCH] inference restored --- _paramters.py | 6 +++--- main_inference.py | 23 ++++++++--------------- util/metric_reader.py | 4 +++- 3 files changed, 14 insertions(+), 19 deletions(-) diff --git a/_paramters.py b/_paramters.py index 7a5258e..0719c35 100644 --- a/_paramters.py +++ b/_paramters.py @@ -32,11 +32,11 @@ main_arg_parser.add_argument("--data_stretch", type=strtobool, default=True, hel # Transformation Parameters main_arg_parser.add_argument("--data_loudness_ratio", type=float, default=0, help="") # 0.4 -main_arg_parser.add_argument("--data_shift_ratio", type=float, default=0, help="") # 0.3 +main_arg_parser.add_argument("--data_shift_ratio", type=float, default=0.3, help="") # 0.3 main_arg_parser.add_argument("--data_noise_ratio", type=float, default=0, help="") # 0.4 main_arg_parser.add_argument("--data_mask_ratio", type=float, default=0, help="") # 0.2 -main_arg_parser.add_argument("--data_speed_ratio", type=float, default=0.3, help="") # 0.3 -main_arg_parser.add_argument("--data_speed_factor", type=float, default=0.7, help="") # 0.7 +main_arg_parser.add_argument("--data_speed_ratio", type=float, default=0, help="") # 0.3 +main_arg_parser.add_argument("--data_speed_factor", type=float, default=0, help="") # 0.7 # Model Parameters main_arg_parser.add_argument("--model_type", type=str, default="RCC", help="") diff --git a/main_inference.py b/main_inference.py index 9a034c3..960a718 100644 --- a/main_inference.py +++ b/main_inference.py @@ -27,7 +27,6 @@ from datasets.binar_masks import BinaryMasksDataset def prepare_dataloader(config_obj): mel_transforms = Compose([ - Speed(0, 0), AudioToMel(sr=config_obj.data.sr, n_mels=config_obj.data.n_mels, n_fft=config_obj.data.n_fft, hop_length=config_obj.data.hop_length), MelToImage()]) @@ -40,16 +39,15 @@ def prepare_dataloader(config_obj): NormalizeLocal(), ToTensor() ]) - dataset: Dataset = BinaryMasksDataset(config_obj.data.root, setting='train', - mel_transforms=mel_transforms, transforms=aug_transforms + dataset: Dataset = BinaryMasksDataset(config_obj.data.root, setting='test', + mel_transforms=mel_transforms, transforms=transforms ) # noinspection PyTypeChecker return DataLoader(dataset, batch_size=None, num_workers=0, shuffle=False) -def restore_logger_and_model(config_obj): - logger = Logger(config_obj) - model = SavedLightningModels.load_checkpoint(models_root_path=logger.log_dir, n=-2) +def restore_logger_and_model(log_dir): + model = SavedLightningModels.load_checkpoint(models_root_path=log_dir, n=-2) model = model.restore() if torch.cuda.is_available(): model.cuda() @@ -63,23 +61,18 @@ if __name__ == '__main__': model_type = 'CC' parameters = 'CC_213adb16e46592c5a405abfbd693835e/' version = 'version_41' + model_path = Path('/home/steffen/projects/inter_challenge_2020/output/CC/CC_fd2020a7ead9d5c80609a7364741f24b/version_40') config_filename = 'config.ini' inference_out = 'manual_test_out.csv' config = MConfig() - config.read_file((outpath / model_type / parameters / version / config_filename).open('r')) + config.read_file((Path(model_path) / config_filename).open('r')) test_dataloader = prepare_dataloader(config) - p = Plotter(outpath) - from matplotlib import pyplot as plt - d = test_dataloader.dataset[100][0].squeeze() - plt.imshow(d) - p.save_current_figure('100') - - loaded_model = restore_logger_and_model(config) + loaded_model = restore_logger_and_model(model_path) loaded_model.eval() - with (outpath / model_type / parameters / version / inference_out).open(mode='w') as outfile: + with (model_path / inference_out).open(mode='w') as outfile: outfile.write(f'file_name,prediction\n') for batch in tqdm(test_dataloader, total=len(test_dataloader)): diff --git a/util/metric_reader.py b/util/metric_reader.py index 60b0f15..ae31c3e 100644 --- a/util/metric_reader.py +++ b/util/metric_reader.py @@ -16,6 +16,8 @@ if __name__ == '__main__': continue out_file = (model_path / metric_file_name) for paramter_configuration in model_path.iterdir(): + if not model_path.is_dir(): + continue uar_scores = defaultdict(list) for metric_file in paramter_configuration.rglob(metric_file_name): with metric_file.open('r') as f: @@ -37,7 +39,7 @@ if __name__ == '__main__': metric_dict[header].append(value) for score, func in zip(['mean', 'max', 'median', 'std'], [np.mean, np.max, np.median, np.std]): try: - uar_scores[score].append(func(np.asarray(metric_dict['uar_score'])).round(2)) + uar_scores[score].append(round(func(np.asarray(metric_dict['uar_score'])) * 100, 2)) except ValueError as e: print(e) pass