BandwiseBinaryClassifier is work in progress; TODO: Shape Piping.

This commit is contained in:
Si11ium 2020-05-04 18:45:13 +02:00
parent e4f6506a4b
commit 451f78f820
7 changed files with 190 additions and 42 deletions

View File

@ -44,7 +44,7 @@ main_arg_parser.add_argument("--model_classes", type=int, default=2, help="")
main_arg_parser.add_argument("--model_lat_dim", type=int, default=16, help="")
main_arg_parser.add_argument("--model_bias", type=strtobool, default=True, help="")
main_arg_parser.add_argument("--model_norm", type=strtobool, default=False, help="")
main_arg_parser.add_argument("--model_dropout", type=float, default=0.00, help="")
main_arg_parser.add_argument("--model_dropout", type=float, default=0.2, help="")
# Project Parameters
main_arg_parser.add_argument("--project_name", type=str, default=_ROOT.name, help="")

View File

@ -30,7 +30,7 @@ class BinaryMasksDataset(Dataset):
self._labels = self._build_labels()
self._wav_folder = self.data_root / 'wav'
self._wav_files = list(sorted(self._labels.keys()))
self._mel_folder = self.data_root / 'raw_mel'
self._mel_folder = self.data_root / 'transformed'
def _build_labels(self):
with open(Path(self.data_root) / 'lab' / 'labels.csv', mode='r') as f:

View File

@ -1,7 +1,7 @@
from torch.utils.data import DataLoader, Dataset
from torchvision.transforms import Compose, ToTensor
from ml_lib.audio_toolset.audio_io import Melspectogram, NormalizeLocal
from ml_lib.audio_toolset.audio_io import AudioToMel, NormalizeLocal
# Dataset and Dataloaders
# =============================================================================
@ -11,7 +11,7 @@ from ml_lib.utils.model_io import SavedLightningModels
from util.config import MConfig
from util.logging import MLogger
transforms = Compose([Melspectogram(), ToTensor(), NormalizeLocal()])
transforms = Compose([AudioToMel(), ToTensor(), NormalizeLocal()])
# Datasets
from datasets.binar_masks import BinaryMasksDataset

View File

@ -0,0 +1,97 @@
from argparse import Namespace
from torch import nn
from torch.nn import ModuleDict
from torchvision.transforms import Compose, ToTensor
from ml_lib.audio_toolset.audio_io import AudioToMel, NormalizeLocal, PowerToDB, MelToImage
from ml_lib.modules.blocks import ConvModule
from ml_lib.modules.utils import LightningBaseModule, Flatten, BaseModuleMixin_Dataloaders, HorizontalSplitter, \
HorizontalMerger
from models.module_mixins import BaseOptimizerMixin, BaseTrainMixin, BaseValMixin
class BandwiseBinaryClassifier(BaseModuleMixin_Dataloaders,
BaseTrainMixin,
BaseValMixin,
BaseOptimizerMixin,
LightningBaseModule
):
def __init__(self, hparams):
super(BandwiseBinaryClassifier, self).__init__(hparams)
# Dataset and Dataloaders
# =============================================================================
# Transforms
transforms = Compose([AudioToMel(), MelToImage(), ToTensor(), NormalizeLocal()])
# Datasets
from datasets.binar_masks import BinaryMasksDataset
self.dataset = Namespace(
**dict(
train_dataset=BinaryMasksDataset(self.params.root, setting='train', transforms=transforms),
val_dataset=BinaryMasksDataset(self.params.root, setting='devel', transforms=transforms),
test_dataset=BinaryMasksDataset(self.params.root, setting='test', transforms=transforms),
)
)
# Model Paramters
# =============================================================================
# Additional parameters
self.in_shape = self.dataset.train_dataset.sample_shape
self.conv_filters = self.params.filters
self.criterion = nn.BCELoss()
self.n_band_sections = 5
# Utility Modules
self.split = HorizontalSplitter(self.in_shape, self.n_band_sections)
# Modules with Parameters
modules = {f"conv_1_{band_section}":
ConvModule(self.in_shape, self.conv_filters[0], 3, conv_stride=2, **self.params.module_kwargs)
for band_section in range(self.n_band_sections)}
modules.update({f"conv_2_{band_section}":
ConvModule(self.conv_1.shape, self.conv_filters[1], 3, conv_stride=2,
**self.params.module_kwargs) for band_section in range(self.n_band_sections)}
)
modules.update({f"conv_3_{band_section}":
ConvModule(self.conv_2.shape, self.conv_filters[2], 3, conv_stride=2,
**self.params.module_kwargs)
for band_section in range(self.n_band_sections)}
)
self.full_1 = nn.Linear(self.flat.shape, self.params.lat_dim, self.params.bias)
self.full_2 = nn.Linear(self.full_1.out_features, self.full_1.out_features // 2, self.params.bias)
self.full_out = nn.Linear(self.full_2.out_features, 1, self.params.bias)
# Utility Modules
self.merge = HorizontalMerger(self.split.shape, self.n_band_sections)
self.conv_dict = ModuleDict(modules=modules)
self.flat = Flatten(self.conv_3.shape)
self.dropout = nn.Dropout2d(self.params.dropout) if self.params.dropout else lambda x: x
self.activation = self.params.activation()
self.sigmoid = nn.Sigmoid()
def forward(self, batch, **kwargs):
tensors = self.split(batch)
for idx, tensor in enumerate(tensors):
tensor[idx] = self.conv_dict[f"conv_1_{idx}"](tensor)
for idx, tensor in enumerate(tensors):
tensor[idx] = self.conv_dict[f"conv_2_{idx}"](tensor)
for idx, tensor in enumerate(tensors):
tensor[idx] = self.conv_dict[f"conv_3_{idx}"](tensor)
tensor = self.merge(tensors)
tensor = self.flat(tensor)
tensor = self.full_1(tensor)
tensor = self.activation(tensor)
tensor = self.dropout(tensor)
tensor = self.full_2(tensor)
tensor = self.activation(tensor)
tensor = self.dropout(tensor)
tensor = self.full_out(tensor)
tensor = self.sigmoid(tensor)
return tensor

View File

@ -1,41 +1,21 @@
from argparse import Namespace
import torch
from torch import nn
from torch.optim import Adam
from torchvision.transforms import Compose, ToTensor
from ml_lib.audio_toolset.audio_io import Melspectogram, NormalizeLocal
from ml_lib.audio_toolset.audio_io import AudioToMel, NormalizeLocal, PowerToDB, MelToImage
from ml_lib.modules.blocks import ConvModule
from ml_lib.modules.utils import LightningBaseModule, Flatten, BaseModuleMixin_Dataloaders
from models.module_mixins import BaseOptimizerMixin, BaseTrainMixin, BaseValMixin
class BinaryClassifier(BaseModuleMixin_Dataloaders, LightningBaseModule):
@classmethod
def name(cls):
return cls.__name__
def configure_optimizers(self):
return Adam(params=self.parameters(), lr=self.params.lr)
def training_step(self, batch_xy, batch_nb, *args, **kwargs):
batch_x, batch_y = batch_xy
y = self(batch_x)
loss = self.criterion(y, batch_y)
return dict(loss=loss)
def validation_step(self, batch_xy, batch_idx, *args, **kwargs):
batch_x, batch_y = batch_xy
y = self(batch_x)
val_loss = self.criterion(y, batch_y)
return dict(val_loss=val_loss, batch_idx=batch_idx)
def validation_epoch_end(self, outputs):
overall_val_loss = torch.mean(torch.stack([output['val_loss'] for output in outputs]))
return dict(log=dict(
mean_val_loss=overall_val_loss)
)
class BinaryClassifier(BaseModuleMixin_Dataloaders,
BaseTrainMixin,
BaseValMixin,
BaseOptimizerMixin,
LightningBaseModule
):
def __init__(self, hparams):
super(BinaryClassifier, self).__init__(hparams)
@ -43,7 +23,7 @@ class BinaryClassifier(BaseModuleMixin_Dataloaders, LightningBaseModule):
# Dataset and Dataloaders
# =============================================================================
# Transforms
transforms = Compose([Melspectogram(), ToTensor(), NormalizeLocal()])
transforms = Compose([AudioToMel(), MelToImage(), ToTensor(), NormalizeLocal()])
# Datasets
from datasets.binar_masks import BinaryMasksDataset
self.dataset = Namespace(
@ -58,29 +38,42 @@ class BinaryClassifier(BaseModuleMixin_Dataloaders, LightningBaseModule):
# =============================================================================
# Additional parameters
self.in_shape = self.dataset.train_dataset.sample_shape
self.conv_filters = self.params.filters
self.criterion = nn.BCELoss()
# Modules
self.conv_1 = ConvModule(self.in_shape, 32, 3, conv_stride=2, **self.params.module_kwargs)
self.conv_2 = ConvModule(self.conv_1.shape, 64, 5, conv_stride=2, **self.params.module_kwargs)
self.conv_3 = ConvModule(self.conv_2.shape, 128, 7, conv_stride=2, **self.params.module_kwargs)
self.flat = Flatten(self.conv_3.shape)
self.full_1 = nn.Linear(self.flat.shape, 32, self.params.bias)
# Modules with Parameters
self.conv_1 = ConvModule(self.in_shape, self.conv_filters[0], 3, conv_stride=2, **self.params.module_kwargs)
self.conv_1b = ConvModule(self.conv_1.shape, self.conv_filters[0], 1, conv_stride=1, **self.params.module_kwargs)
self.conv_2 = ConvModule(self.conv_1b.shape, self.conv_filters[1], 5, conv_stride=2, **self.params.module_kwargs)
self.conv_2b = ConvModule(self.conv_2.shape, self.conv_filters[1], 1, conv_stride=1, **self.params.module_kwargs)
self.conv_3 = ConvModule(self.conv_2b.shape, self.conv_filters[2], 7, conv_stride=2, **self.params.module_kwargs)
self.conv_3b = ConvModule(self.conv_3.shape, self.conv_filters[2], 1, conv_stride=1, **self.params.module_kwargs)
self.flat = Flatten(self.conv_3b.shape)
self.full_1 = nn.Linear(self.flat.shape, self.params.lat_dim, self.params.bias)
self.full_2 = nn.Linear(self.full_1.out_features, self.full_1.out_features // 2, self.params.bias)
self.activation = self.params.activation()
self.full_out = nn.Linear(self.full_2.out_features, 1, self.params.bias)
# Utility Modules
self.dropout = nn.Dropout2d(self.params.dropout) if self.params.dropout else lambda x: x
self.activation = self.params.activation()
self.sigmoid = nn.Sigmoid()
def forward(self, batch, **kwargs):
tensor = self.conv_1(batch)
tensor = self.conv_1b(tensor)
tensor = self.conv_2(tensor)
tensor = self.conv_2b(tensor)
tensor = self.conv_3(tensor)
tensor = self.conv_3b(tensor)
tensor = self.flat(tensor)
tensor = self.full_1(tensor)
tensor = self.activation(tensor)
tensor = self.dropout(tensor)
tensor = self.full_2(tensor)
tensor = self.activation(tensor)
tensor = self.dropout(tensor)
tensor = self.full_out(tensor)
tensor = self.sigmoid(tensor)
return tensor

55
models/module_mixins.py Normal file
View File

@ -0,0 +1,55 @@
import sklearn
import torch
import numpy as np
from torch.nn import L1Loss
from torch.optim import Adam
class BaseOptimizerMixin:
def configure_optimizers(self):
return Adam(params=self.parameters(), lr=self.params.lr)
class BaseTrainMixin:
def training_step(self, batch_xy, batch_nb, *args, **kwargs):
batch_x, batch_y = batch_xy
y = self(batch_x)
loss = self.criterion(y, batch_y)
return dict(loss=loss)
def training_epoch_end(self, outputs):
mean_train_loss = torch.mean(torch.stack([output['loss'] for output in outputs]))
return dict(log=dict(mean_train_loss=mean_train_loss))
class BaseValMixin:
absolute_loss = L1Loss()
def validation_step(self, batch_xy, batch_idx, *args, **kwargs):
batch_x, batch_y = batch_xy
y = self(batch_x)
val_loss = self.criterion(y, batch_y)
absolute_error = self.absolute_loss(y, batch_y)
return dict(val_loss=val_loss, absolute_error=absolute_error, batch_idx=batch_idx, y=y, batch_y=batch_y)
def validation_epoch_end(self, outputs):
overall_val_loss = torch.mean(torch.stack([output['val_loss'] for output in outputs]))
mean_absolute_error = torch.mean(torch.stack([output['absolute_error'] for output in outputs]))
# UnweightedAverageRecall
y_true = torch.cat([output['batch_y'] for output in outputs]) .cpu().numpy()
y_pred = torch.cat([output['y'] for output in outputs]).squeeze().cpu().numpy()
y_pred = (y_pred >= 0.5).astype(np.float32)
uar_score = sklearn.metrics.recall_score(y_true, y_pred, labels=[0, 1], average='macro',
sample_weight=None, zero_division='warn')
return dict(
log=dict(mean_val_loss=overall_val_loss,
mean_absolute_error=mean_absolute_error,
uar_score=uar_score)
)

View File

@ -1,9 +1,12 @@
from ml_lib.utils.config import Config
from models.binary_classifier import BinaryClassifier
from models.bandwise_binary_classifier import BandwiseBinaryClassifier
class MConfig(Config):
# TODO: There should be a way to automate this.
@property
def _model_map(self):
return dict(BinaryClassifier=BinaryClassifier)
return dict(BinaryClassifier=BinaryClassifier,
BandwiseBinaryClassifier=BandwiseBinaryClassifier)