LinearModule
This commit is contained in:
parent
5e6b0e598f
commit
3fbc98dfa3
@ -24,11 +24,14 @@ main_arg_parser.add_argument("--data_class_name", type=str, default='BinaryMasks
|
||||
main_arg_parser.add_argument("--data_normalized", type=strtobool, default=True, help="")
|
||||
main_arg_parser.add_argument("--data_use_preprocessed", type=strtobool, default=True, help="")
|
||||
main_arg_parser.add_argument("--data_n_mels", type=int, default=64, help="")
|
||||
main_arg_parser.add_argument("--data_sr", type=int, default=16000, help="")
|
||||
main_arg_parser.add_argument("--data_hop_length", type=int, default=62, help="")
|
||||
main_arg_parser.add_argument("--data_n_fft", type=int, default=512, help="")
|
||||
main_arg_parser.add_argument("--data_mixup", type=strtobool, default=False, help="")
|
||||
|
||||
# Transformation Parameters
|
||||
main_arg_parser.add_argument("--data_loudness_ratio", type=float, default=0.08, help="")
|
||||
main_arg_parser.add_argument("--data_shift_ratio", type=float, default=0.2, help="")
|
||||
main_arg_parser.add_argument("--data_loudness_ratio", type=float, default=0.2, help="")
|
||||
main_arg_parser.add_argument("--data_shift_ratio", type=float, default=0.4, help="")
|
||||
main_arg_parser.add_argument("--data_noise_ratio", type=float, default=0.15, help="")
|
||||
|
||||
# Training Parameters
|
||||
@ -36,9 +39,10 @@ main_arg_parser.add_argument("--train_outpath", type=str, default="output", help
|
||||
main_arg_parser.add_argument("--train_version", type=strtobool, required=False, help="")
|
||||
# FIXME: Stochastic weight Avaraging is not good, maybe its my implementation?
|
||||
main_arg_parser.add_argument("--train_sto_weight_avg", type=strtobool, default=False, help="")
|
||||
main_arg_parser.add_argument("--train_opt_reset_interval", type=int, default=300, help="")
|
||||
main_arg_parser.add_argument("--train_epochs", type=int, default=600, help="")
|
||||
main_arg_parser.add_argument("--train_batch_size", type=int, default=250, help="")
|
||||
main_arg_parser.add_argument("--train_lr", type=float, default=1e-3, help="")
|
||||
main_arg_parser.add_argument("--train_lr", type=float, default=1e-4, help="")
|
||||
main_arg_parser.add_argument("--train_num_sanity_val_steps", type=int, default=0, help="")
|
||||
|
||||
# Model Parameters
|
||||
@ -46,12 +50,12 @@ main_arg_parser.add_argument("--model_type", type=str, default="ConvClassifier",
|
||||
main_arg_parser.add_argument("--model_secondary_type", type=str, default="BandwiseConvMultiheadClassifier", help="")
|
||||
main_arg_parser.add_argument("--model_weight_init", type=str, default="xavier_normal_", help="")
|
||||
main_arg_parser.add_argument("--model_activation", type=str, default="leaky_relu", help="")
|
||||
main_arg_parser.add_argument("--model_filters", type=str, default="[16, 32, 64, 128]", help="")
|
||||
main_arg_parser.add_argument("--model_filters", type=str, default="[16, 32, 64, 128, 64]", help="")
|
||||
main_arg_parser.add_argument("--model_classes", type=int, default=2, help="")
|
||||
main_arg_parser.add_argument("--model_lat_dim", type=int, default=8, help="")
|
||||
main_arg_parser.add_argument("--model_bias", type=strtobool, default=True, help="")
|
||||
main_arg_parser.add_argument("--model_norm", type=strtobool, default=True, help="")
|
||||
main_arg_parser.add_argument("--model_dropout", type=float, default=0.25, help="")
|
||||
main_arg_parser.add_argument("--model_dropout", type=float, default=0.0, help="")
|
||||
|
||||
# Project Parameters
|
||||
main_arg_parser.add_argument("--project_name", type=str, default=_ROOT.name, help="")
|
||||
|
71
main.py
71
main.py
@ -78,41 +78,44 @@ def run_lightning_loop(config_obj):
|
||||
|
||||
# Evaluate It
|
||||
if config_obj.main.eval:
|
||||
model.eval()
|
||||
if torch.cuda.is_available():
|
||||
model.cuda()
|
||||
outputs = []
|
||||
from tqdm import tqdm
|
||||
for idx, batch in enumerate(tqdm(model.val_dataloader())):
|
||||
batch_x, label = batch
|
||||
outputs.append(
|
||||
model.validation_step((batch_x.to(device='cuda' if model.on_gpu else 'cpu'), label), idx)
|
||||
)
|
||||
summary_dict = model.validation_epoch_end(outputs)
|
||||
print(summary_dict['log']['uar_score'])
|
||||
|
||||
# trainer.test()
|
||||
outpath = Path(config_obj.train.outpath)
|
||||
model_type = config_obj.model.type
|
||||
parameters = logger.name
|
||||
version = f'version_{logger.version}'
|
||||
inference_out = f'{parameters}_test_out.csv'
|
||||
|
||||
from main_inference import prepare_dataloader
|
||||
test_dataloader = prepare_dataloader(config)
|
||||
|
||||
with (outpath / model_type / parameters / version / inference_out).open(mode='w') as outfile:
|
||||
outfile.write(f'file_name,prediction\n')
|
||||
|
||||
with torch.no_grad():
|
||||
model.eval()
|
||||
if torch.cuda.is_available():
|
||||
model.cuda()
|
||||
outputs = []
|
||||
from tqdm import tqdm
|
||||
for batch in tqdm(test_dataloader, total=len(test_dataloader)):
|
||||
batch_x, file_name = batch
|
||||
batch_x = batch_x.unsqueeze(0).to(device='cuda' if model.on_gpu else 'cpu')
|
||||
y = model(batch_x).main_out
|
||||
prediction = (y.squeeze() >= 0.5).int().item()
|
||||
import variables as V
|
||||
prediction = 'clear' if prediction == V.CLEAR else 'mask'
|
||||
outfile.write(f'{file_name},{prediction}\n')
|
||||
for idx, batch in enumerate(tqdm(model.val_dataloader()[0])):
|
||||
batch_x, label = batch
|
||||
batch_x = batch_x.to(device='cuda' if model.on_gpu else 'cpu')
|
||||
label = label.to(device='cuda' if model.on_gpu else 'cpu')
|
||||
outputs.append(
|
||||
model.validation_step((batch_x, label), idx, 1)
|
||||
)
|
||||
summary_dict = model.validation_epoch_end([outputs])
|
||||
print(summary_dict['log']['uar_score'])
|
||||
|
||||
# trainer.test()
|
||||
outpath = Path(config_obj.train.outpath)
|
||||
model_type = config_obj.model.type
|
||||
parameters = logger.name
|
||||
version = f'version_{logger.version}'
|
||||
inference_out = f'{parameters}_test_out.csv'
|
||||
|
||||
from main_inference import prepare_dataloader
|
||||
test_dataloader = prepare_dataloader(config)
|
||||
|
||||
with (outpath / model_type / parameters / version / inference_out).open(mode='w') as outfile:
|
||||
outfile.write(f'file_name,prediction\n')
|
||||
|
||||
from tqdm import tqdm
|
||||
for batch in tqdm(test_dataloader, total=len(test_dataloader)):
|
||||
batch_x, file_name = batch
|
||||
batch_x = batch_x.unsqueeze(0).to(device='cuda' if model.on_gpu else 'cpu')
|
||||
y = model(batch_x).main_out
|
||||
prediction = (y.squeeze() >= 0.5).int().item()
|
||||
import variables as V
|
||||
prediction = 'clear' if prediction == V.CLEAR else 'mask'
|
||||
outfile.write(f'{file_name},{prediction}\n')
|
||||
return model
|
||||
|
||||
|
||||
|
@ -23,7 +23,10 @@ from datasets.binar_masks import BinaryMasksDataset
|
||||
|
||||
|
||||
def prepare_dataloader(config_obj):
|
||||
mel_transforms = Compose([AudioToMel(n_mels=config_obj.data.n_mels), MelToImage()])
|
||||
mel_transforms = Compose([
|
||||
# Audio to Mel Transformations
|
||||
AudioToMel(sr=config_obj.data.sr, n_mels=config_obj.data.n_mels, n_fft=config_obj.data.n_fft,
|
||||
hop_length=config_obj.data.hop_length), MelToImage()])
|
||||
transforms = Compose([NormalizeLocal(), ToTensor()])
|
||||
|
||||
dataset: Dataset = BinaryMasksDataset(config_obj.data.root, setting='test',
|
||||
|
@ -3,9 +3,9 @@ from argparse import Namespace
|
||||
from torch import nn
|
||||
from torch.nn import ModuleDict, ModuleList
|
||||
|
||||
from ml_lib.modules.blocks import ConvModule
|
||||
from ml_lib.modules.blocks import ConvModule, LinearModule
|
||||
from ml_lib.modules.utils import (LightningBaseModule, HorizontalSplitter,
|
||||
HorizontalMerger)
|
||||
HorizontalMerger, F_x)
|
||||
from util.module_mixins import (BaseOptimizerMixin, BaseTrainMixin, BaseValMixin, BinaryMaskDatasetFunction,
|
||||
BaseDataloadersMixin)
|
||||
|
||||
@ -54,15 +54,11 @@ class BandwiseConvClassifier(BinaryMaskDatasetFunction,
|
||||
|
||||
self.merge = HorizontalMerger(self.conv_dict['conv_3_1'].shape, self.n_band_sections)
|
||||
|
||||
self.full_1 = nn.Linear(self.flat.shape, self.params.lat_dim, self.params.bias)
|
||||
self.full_2 = nn.Linear(self.full_1.out_features, self.full_1.out_features // 2, self.params.bias)
|
||||
self.full_1 = LinearModule(self.flat.shape, self.params.lat_dim, **self.params.module_kwargs)
|
||||
self.full_2 = LinearModule(self.full_1.shape, self.full_1.shape * 2, **self.params.module_kwargs)
|
||||
self.full_3 = LinearModule(self.full_2.shape, self.full_2.out_features // 2, **self.params.module_kwargs)
|
||||
|
||||
self.full_out = nn.Linear(self.full_2.out_features, 1, self.params.bias)
|
||||
|
||||
# Utility Modules
|
||||
self.dropout = nn.Dropout2d(self.params.dropout) if self.params.dropout else lambda x: x
|
||||
self.activation = self.params.activation()
|
||||
self.sigmoid = nn.Sigmoid()
|
||||
self.full_out = LinearModule(self.full_3.shape, 1, bias=self.params.bias, activation=nn.Sigmoid)
|
||||
|
||||
def forward(self, batch, **kwargs):
|
||||
tensors = self.split(batch)
|
||||
@ -74,13 +70,8 @@ class BandwiseConvClassifier(BinaryMaskDatasetFunction,
|
||||
tensors[idx] = self.conv_dict[f"conv_3_{idx}"](tensor)
|
||||
|
||||
tensor = self.merge(tensors)
|
||||
tensor = self.flat(tensor)
|
||||
tensor = self.full_1(tensor)
|
||||
tensor = self.activation(tensor)
|
||||
tensor = self.dropout(tensor)
|
||||
tensor = self.full_2(tensor)
|
||||
tensor = self.activation(tensor)
|
||||
tensor = self.dropout(tensor)
|
||||
tensor = self.full_3(tensor)
|
||||
tensor = self.full_out(tensor)
|
||||
tensor = self.sigmoid(tensor)
|
||||
return Namespace(main_out=tensor)
|
||||
|
@ -1,12 +1,10 @@
|
||||
from argparse import Namespace
|
||||
from collections import defaultdict
|
||||
|
||||
import torch
|
||||
from torch import nn
|
||||
from torch.nn import ModuleDict, ModuleList
|
||||
from torchcontrib.optim import SWA
|
||||
from torch.nn import ModuleList
|
||||
|
||||
from ml_lib.modules.blocks import ConvModule
|
||||
from ml_lib.modules.blocks import ConvModule, LinearModule
|
||||
from ml_lib.modules.utils import (LightningBaseModule, Flatten, HorizontalSplitter)
|
||||
from util.module_mixins import (BaseOptimizerMixin, BaseTrainMixin, BaseValMixin, BinaryMaskDatasetFunction,
|
||||
BaseDataloadersMixin)
|
||||
@ -59,49 +57,57 @@ class BandwiseConvMultiheadClassifier(BinaryMaskDatasetFunction,
|
||||
self.in_shape = self.dataset.train_dataset.sample_shape
|
||||
self.conv_filters = self.params.filters
|
||||
self.criterion = nn.BCELoss()
|
||||
self.n_band_sections = 8
|
||||
self.n_band_sections = 4
|
||||
k = 3 # Base Kernel Value
|
||||
|
||||
# Modules
|
||||
# =============================================================================
|
||||
self.split = HorizontalSplitter(self.in_shape, self.n_band_sections)
|
||||
self.conv_dict = ModuleDict()
|
||||
|
||||
self.conv_dict.update({f"conv_1_{band_section}":
|
||||
ConvModule(self.split.shape, self.conv_filters[0], 3, conv_stride=1, **self.params.module_kwargs)
|
||||
for band_section in range(self.n_band_sections)}
|
||||
)
|
||||
self.conv_dict.update({f"conv_2_{band_section}":
|
||||
ConvModule(self.conv_dict['conv_1_1'].shape, self.conv_filters[1], 3, conv_stride=1,
|
||||
**self.params.module_kwargs) for band_section in range(self.n_band_sections)}
|
||||
)
|
||||
self.conv_dict.update({f"conv_3_{band_section}":
|
||||
ConvModule(self.conv_dict['conv_2_1'].shape, self.conv_filters[2], 3, conv_stride=1,
|
||||
**self.params.module_kwargs)
|
||||
for band_section in range(self.n_band_sections)}
|
||||
)
|
||||
self.band_list = ModuleList()
|
||||
for band in range(self.n_band_sections):
|
||||
last_shape = self.split.shape
|
||||
conv_list = ModuleList()
|
||||
for filters in self.conv_filters:
|
||||
conv_list.append(ConvModule(last_shape, filters, (k, k*4), conv_stride=(1, 2),
|
||||
**self.params.module_kwargs))
|
||||
last_shape = conv_list[-1].shape
|
||||
# self.conv_list.append(ConvModule(last_shape, 1, 1, conv_stride=1, **self.params.module_kwargs))
|
||||
# last_shape = self.conv_list[-1].shape
|
||||
self.band_list.append(conv_list)
|
||||
|
||||
self.flat = Flatten(self.conv_dict['conv_3_1'].shape)
|
||||
self.bandwise_deep_list_1 = ModuleList([
|
||||
LinearModule(self.band_list[0][-1].shape, self.params.lat_dim * 4, **self.params.module_kwargs)
|
||||
for _ in range(self.n_band_sections)])
|
||||
self.bandwise_deep_list_2 = ModuleList([
|
||||
LinearModule(self.params.lat_dim * 4, self.params.lat_dim * 2, **self.params.module_kwargs)
|
||||
for _ in range(self.n_band_sections)])
|
||||
self.bandwise_latent_list = ModuleList([
|
||||
nn.Linear(self.flat.shape, self.params.lat_dim, self.params.bias) for _ in range(self.n_band_sections)])
|
||||
self.bandwise_classifier_list = ModuleList([nn.Linear(self.params.lat_dim, 1, self.params.bias)
|
||||
for _ in range(self.n_band_sections)])
|
||||
LinearModule(self.params.lat_dim * 2, self.params.lat_dim, **self.params.module_kwargs)
|
||||
for _ in range(self.n_band_sections)])
|
||||
self.bandwise_classifier_list = ModuleList([
|
||||
LinearModule(self.params.lat_dim, 1, bias=self.params.bias, activation=nn.Sigmoid)
|
||||
for _ in range(self.n_band_sections)])
|
||||
|
||||
self.full_out = nn.Linear(self.n_band_sections, 1, self.params.bias)
|
||||
|
||||
# Utility Modules
|
||||
self.sigmoid = nn.Sigmoid()
|
||||
self.full_1 = LinearModule(self.n_band_sections, self.params.lat_dim * 4, **self.params.module_kwargs)
|
||||
self.full_2 = LinearModule(self.full_1.shape, self.params.lat_dim * 2, **self.params.module_kwargs)
|
||||
self.full_3 = LinearModule(self.full_2.shape, self.params.lat_dim, **self.params.module_kwargs)
|
||||
self.full_out = LinearModule(self.full_3.shape, 1, bias=self.params.bias, activation=nn.Sigmoid)
|
||||
|
||||
def forward(self, batch, **kwargs):
|
||||
tensors = self.split(batch)
|
||||
for idx, tensor in enumerate(tensors):
|
||||
tensor = self.conv_dict[f"conv_1_{idx}"](tensor)
|
||||
tensor = self.conv_dict[f"conv_2_{idx}"](tensor)
|
||||
tensor = self.conv_dict[f"conv_3_{idx}"](tensor)
|
||||
tensor = self.flat(tensor)
|
||||
for idx, (tensor, convs) in enumerate(zip(tensors, self.band_list)):
|
||||
for conv in convs:
|
||||
tensor = conv(tensor)
|
||||
|
||||
tensor = self.bandwise_deep_list_1[idx](tensor)
|
||||
tensor = self.bandwise_deep_list_2[idx](tensor)
|
||||
tensor = self.bandwise_latent_list[idx](tensor)
|
||||
tensor = self.bandwise_classifier_list[idx](tensor)
|
||||
tensors[idx] = self.sigmoid(tensor)
|
||||
tensors[idx] = self.bandwise_classifier_list[idx](tensor)
|
||||
|
||||
tensor = torch.cat(tensors, dim=1)
|
||||
tensor = self.full_1(tensor)
|
||||
tensor = self.full_2(tensor)
|
||||
tensor = self.full_3(tensor)
|
||||
tensor = self.full_out(tensor)
|
||||
tensor = self.sigmoid(tensor)
|
||||
return Namespace(main_out=tensor, bands=tensors)
|
||||
|
@ -3,8 +3,8 @@ from argparse import Namespace
|
||||
from torch import nn
|
||||
from torch.nn import ModuleList
|
||||
|
||||
from ml_lib.modules.blocks import ConvModule
|
||||
from ml_lib.modules.utils import LightningBaseModule, Flatten
|
||||
from ml_lib.modules.blocks import ConvModule, LinearModule
|
||||
from ml_lib.modules.utils import LightningBaseModule
|
||||
from util.module_mixins import (BaseOptimizerMixin, BaseTrainMixin, BaseValMixin, BinaryMaskDatasetFunction,
|
||||
BaseDataloadersMixin)
|
||||
|
||||
@ -38,38 +38,21 @@ class ConvClassifier(BinaryMaskDatasetFunction,
|
||||
for filters in self.conv_filters:
|
||||
self.conv_list.append(ConvModule(last_shape, filters, (k, k*2), conv_stride=2, **self.params.module_kwargs))
|
||||
last_shape = self.conv_list[-1].shape
|
||||
self.conv_list.appen(ConvModule(last_shape, filters, 1, conv_stride=1, **self.params.module_kwargs))
|
||||
last_shape = self.conv_list[-1].shape
|
||||
self.conv_list.appen(ConvModule(last_shape, 1, 1, conv_stride=1, **self.params.module_kwargs))
|
||||
last_shape = self.conv_list[-1].shape
|
||||
k = k+2
|
||||
# self.conv_list.append(ConvModule(last_shape, 1, 1, conv_stride=1, **self.params.module_kwargs))
|
||||
# last_shape = self.conv_list[-1].shape
|
||||
|
||||
self.flat = Flatten(self.conv_list[-1].shape)
|
||||
self.full_1 = nn.Linear(self.flat.shape, self.params.lat_dim, self.params.bias)
|
||||
self.full_2 = nn.Linear(self.full_1.out_features, self.full_1.out_features * 2, self.params.bias)
|
||||
self.full_3 = nn.Linear(self.full_2.out_features, self.full_2.out_features // 2, self.params.bias)
|
||||
self.full_1 = LinearModule(self.flat.shape, self.params.lat_dim, **self.params.module_kwargs)
|
||||
self.full_2 = LinearModule(self.full_1.out_features, self.full_1.out_features * 2, self.params.bias)
|
||||
self.full_3 = LinearModule(self.full_2.out_features, self.full_2.out_features // 2, self.params.bias)
|
||||
|
||||
self.full_out = nn.Linear(self.full_3.out_features, 1, self.params.bias)
|
||||
|
||||
# Utility Modules
|
||||
self.dropout = nn.Dropout2d(self.params.dropout) if self.params.dropout else lambda x: x
|
||||
self.activation = self.params.activation()
|
||||
self.sigmoid = nn.Sigmoid()
|
||||
self.full_out = LinearModule(self.full_3.out_features, 1, bias=self.params.bias, activation=nn.Sigmoid)
|
||||
|
||||
def forward(self, batch, **kwargs):
|
||||
tensor = batch
|
||||
for conv in self.conv_list:
|
||||
tensor = conv(tensor)
|
||||
tensor = self.flat(tensor)
|
||||
tensor = self.full_1(tensor)
|
||||
tensor = self.activation(tensor)
|
||||
tensor = self.dropout(tensor)
|
||||
tensor = self.full_2(tensor)
|
||||
tensor = self.activation(tensor)
|
||||
tensor = self.dropout(tensor)
|
||||
tensor = self.full_3(tensor)
|
||||
tensor = self.activation(tensor)
|
||||
tensor = self.dropout(tensor)
|
||||
tensor = self.full_out(tensor)
|
||||
tensor = self.sigmoid(tensor)
|
||||
return Namespace(main_out=tensor)
|
||||
|
@ -14,6 +14,7 @@ from torchvision.transforms import Compose, RandomApply
|
||||
|
||||
from ml_lib.audio_toolset.audio_augmentation import NoiseInjection, LoudnessManipulator, ShiftTime
|
||||
from ml_lib.audio_toolset.audio_io import AudioToMel, MelToImage, NormalizeLocal
|
||||
from ml_lib.modules.utils import LightningBaseModule
|
||||
from ml_lib.utils.transforms import ToTensor
|
||||
|
||||
import variables as V
|
||||
@ -22,6 +23,7 @@ import variables as V
|
||||
class BaseOptimizerMixin:
|
||||
|
||||
def configure_optimizers(self):
|
||||
assert isinstance(self, LightningBaseModule)
|
||||
opt = Adam(params=self.parameters(), lr=self.params.lr)
|
||||
if self.params.sto_weight_avg:
|
||||
opt = SWA(opt, swa_start=10, swa_freq=5, swa_lr=0.05)
|
||||
@ -33,7 +35,7 @@ class BaseOptimizerMixin:
|
||||
opt.swap_swa_sgd()
|
||||
|
||||
def on_epoch_end(self):
|
||||
if False: # FIXME: Pass a new parameter to model args.
|
||||
if self.params.opt_reset_interval:
|
||||
if self.current_epoch % self.params.opt_reset_interval == 0:
|
||||
for opt in self.trainer.optimizers:
|
||||
opt.state = defaultdict(dict)
|
||||
@ -42,6 +44,7 @@ class BaseOptimizerMixin:
|
||||
class BaseTrainMixin:
|
||||
|
||||
def training_step(self, batch_xy, batch_nb, *args, **kwargs):
|
||||
assert isinstance(self, LightningBaseModule)
|
||||
batch_x, batch_y = batch_xy
|
||||
y = self(batch_x).main_out
|
||||
loss = self.criterion(y, batch_y)
|
||||
@ -60,7 +63,7 @@ class BaseValMixin:
|
||||
|
||||
absolute_loss = L1Loss()
|
||||
|
||||
def validation_step(self, batch_xy, batch_idx, *args, **kwargs):
|
||||
def validation_step(self, batch_xy, batch_idx, dataloader_idx, *args, **kwargs):
|
||||
batch_x, batch_y = batch_xy
|
||||
y = self(batch_x).main_out
|
||||
val_bce_loss = self.criterion(y, batch_y)
|
||||
@ -69,52 +72,63 @@ class BaseValMixin:
|
||||
batch_idx=batch_idx, y=y, batch_y=batch_y
|
||||
)
|
||||
|
||||
def validation_epoch_end(self, outputs):
|
||||
keys = list(outputs[0].keys())
|
||||
def validation_epoch_end(self, outputs, *args, **kwargs):
|
||||
summary_dict = dict(log=dict())
|
||||
for output_idx, output in enumerate(outputs):
|
||||
keys = list(output[0].keys())
|
||||
ident = '' if output_idx == 0 else '_train'
|
||||
summary_dict['log'].update({f'mean{ident}_{key}': torch.mean(torch.stack([output[key]
|
||||
for output in output]))
|
||||
for key in keys if 'loss' in key}
|
||||
)
|
||||
|
||||
summary_dict = dict(log={f'mean_{key}': torch.mean(torch.stack([output[key]
|
||||
for output in outputs]))
|
||||
for key in keys if 'loss' in key})
|
||||
# UnweightedAverageRecall
|
||||
y_true = torch.cat([output['batch_y'] for output in output]) .cpu().numpy()
|
||||
y_pred = torch.cat([output['y'] for output in output]).squeeze().cpu().numpy()
|
||||
|
||||
# UnweightedAverageRecall
|
||||
y_true = torch.cat([output['batch_y'] for output in outputs]) .cpu().numpy()
|
||||
y_pred = torch.cat([output['y'] for output in outputs]).squeeze().cpu().numpy()
|
||||
y_pred = (y_pred >= 0.5).astype(np.float32)
|
||||
|
||||
y_pred = (y_pred >= 0.5).astype(np.float32)
|
||||
uar_score = sklearn.metrics.recall_score(y_true, y_pred, labels=[0, 1], average='macro',
|
||||
sample_weight=None, zero_division='warn')
|
||||
|
||||
uar_score = sklearn.metrics.recall_score(y_true, y_pred, labels=[0, 1], average='macro',
|
||||
sample_weight=None, zero_division='warn')
|
||||
summary_dict['log'].update(uar_score=uar_score)
|
||||
summary_dict['log'].update({f'uar{ident}_score': uar_score})
|
||||
return summary_dict
|
||||
|
||||
|
||||
class BinaryMaskDatasetFunction:
|
||||
|
||||
def build_dataset(self):
|
||||
assert isinstance(self, LightningBaseModule)
|
||||
|
||||
# Dataset
|
||||
# =============================================================================
|
||||
# Mel Transforms
|
||||
mel_transforms = Compose([
|
||||
# Audio to Mel Transformations
|
||||
AudioToMel(n_mels=self.params.n_mels), MelToImage()])
|
||||
AudioToMel(sr=self.params.sr, n_mels=self.params.n_mels, n_fft=self.params.n_fft,
|
||||
hop_length=self.params.hop_length), MelToImage()])
|
||||
# Data Augmentations
|
||||
aug_transforms = Compose([
|
||||
RandomApply([
|
||||
NoiseInjection(self.params.noise_ratio),
|
||||
LoudnessManipulator(self.params.loudness_ratio),
|
||||
ShiftTime(self.params.shift_ratio)], p=0.5),
|
||||
NoiseInjection(self.params.noise_ratio),
|
||||
LoudnessManipulator(self.params.loudness_ratio),
|
||||
ShiftTime(self.params.shift_ratio)], p=0.5),
|
||||
# Utility
|
||||
NormalizeLocal(), ToTensor()
|
||||
])
|
||||
val_transforms = Compose([NormalizeLocal(), ToTensor()])
|
||||
|
||||
# sampler = RandomSampler(train_dataset, True, len(train_dataset)) if params['bootstrap'] else None
|
||||
|
||||
# Datasets
|
||||
from datasets.binar_masks import BinaryMasksDataset
|
||||
dataset = Namespace(
|
||||
**dict(
|
||||
train_dataset=BinaryMasksDataset(self.params.root, setting=V.DATA_OPTIONS.train, mixup=self.params.mixup,
|
||||
train_dataset=BinaryMasksDataset(self.params.root, setting=V.DATA_OPTIONS.train,
|
||||
mixup=self.params.mixup,
|
||||
mel_transforms=mel_transforms, transforms=aug_transforms),
|
||||
val_train_dataset=BinaryMasksDataset(self.params.root, setting=V.DATA_OPTIONS.train,
|
||||
mel_transforms=mel_transforms, transforms=val_transforms),
|
||||
val_dataset=BinaryMasksDataset(self.params.root, setting=V.DATA_OPTIONS.devel,
|
||||
mel_transforms=mel_transforms, transforms=val_transforms),
|
||||
test_dataset=BinaryMasksDataset(self.params.root, setting=V.DATA_OPTIONS.test,
|
||||
@ -142,6 +156,9 @@ class BaseDataloadersMixin(ABC):
|
||||
|
||||
# Validation Dataloader
|
||||
def val_dataloader(self):
|
||||
return DataLoader(dataset=self.dataset.val_dataset, shuffle=True,
|
||||
batch_size=self.params.batch_size,
|
||||
num_workers=self.params.worker)
|
||||
val_dataloader = DataLoader(dataset=self.dataset.val_dataset, shuffle=True,
|
||||
batch_size=self.params.batch_size, num_workers=self.params.worker)
|
||||
|
||||
train_dataloader = DataLoader(self.dataset.val_train_dataset, num_workers=self.params.worker,
|
||||
batch_size=self.params.batch_size, shuffle=False)
|
||||
return [val_dataloader, train_dataloader]
|
||||
|
Loading…
x
Reference in New Issue
Block a user