LinearModule

This commit is contained in:
Si11ium 2020-05-09 21:56:58 +02:00
parent 5e6b0e598f
commit 3fbc98dfa3
7 changed files with 145 additions and 138 deletions

View File

@ -24,11 +24,14 @@ main_arg_parser.add_argument("--data_class_name", type=str, default='BinaryMasks
main_arg_parser.add_argument("--data_normalized", type=strtobool, default=True, help="")
main_arg_parser.add_argument("--data_use_preprocessed", type=strtobool, default=True, help="")
main_arg_parser.add_argument("--data_n_mels", type=int, default=64, help="")
main_arg_parser.add_argument("--data_sr", type=int, default=16000, help="")
main_arg_parser.add_argument("--data_hop_length", type=int, default=62, help="")
main_arg_parser.add_argument("--data_n_fft", type=int, default=512, help="")
main_arg_parser.add_argument("--data_mixup", type=strtobool, default=False, help="")
# Transformation Parameters
main_arg_parser.add_argument("--data_loudness_ratio", type=float, default=0.08, help="")
main_arg_parser.add_argument("--data_shift_ratio", type=float, default=0.2, help="")
main_arg_parser.add_argument("--data_loudness_ratio", type=float, default=0.2, help="")
main_arg_parser.add_argument("--data_shift_ratio", type=float, default=0.4, help="")
main_arg_parser.add_argument("--data_noise_ratio", type=float, default=0.15, help="")
# Training Parameters
@ -36,9 +39,10 @@ main_arg_parser.add_argument("--train_outpath", type=str, default="output", help
main_arg_parser.add_argument("--train_version", type=strtobool, required=False, help="")
# FIXME: Stochastic weight Avaraging is not good, maybe its my implementation?
main_arg_parser.add_argument("--train_sto_weight_avg", type=strtobool, default=False, help="")
main_arg_parser.add_argument("--train_opt_reset_interval", type=int, default=300, help="")
main_arg_parser.add_argument("--train_epochs", type=int, default=600, help="")
main_arg_parser.add_argument("--train_batch_size", type=int, default=250, help="")
main_arg_parser.add_argument("--train_lr", type=float, default=1e-3, help="")
main_arg_parser.add_argument("--train_lr", type=float, default=1e-4, help="")
main_arg_parser.add_argument("--train_num_sanity_val_steps", type=int, default=0, help="")
# Model Parameters
@ -46,12 +50,12 @@ main_arg_parser.add_argument("--model_type", type=str, default="ConvClassifier",
main_arg_parser.add_argument("--model_secondary_type", type=str, default="BandwiseConvMultiheadClassifier", help="")
main_arg_parser.add_argument("--model_weight_init", type=str, default="xavier_normal_", help="")
main_arg_parser.add_argument("--model_activation", type=str, default="leaky_relu", help="")
main_arg_parser.add_argument("--model_filters", type=str, default="[16, 32, 64, 128]", help="")
main_arg_parser.add_argument("--model_filters", type=str, default="[16, 32, 64, 128, 64]", help="")
main_arg_parser.add_argument("--model_classes", type=int, default=2, help="")
main_arg_parser.add_argument("--model_lat_dim", type=int, default=8, help="")
main_arg_parser.add_argument("--model_bias", type=strtobool, default=True, help="")
main_arg_parser.add_argument("--model_norm", type=strtobool, default=True, help="")
main_arg_parser.add_argument("--model_dropout", type=float, default=0.25, help="")
main_arg_parser.add_argument("--model_dropout", type=float, default=0.0, help="")
# Project Parameters
main_arg_parser.add_argument("--project_name", type=str, default=_ROOT.name, help="")

71
main.py
View File

@ -78,41 +78,44 @@ def run_lightning_loop(config_obj):
# Evaluate It
if config_obj.main.eval:
model.eval()
if torch.cuda.is_available():
model.cuda()
outputs = []
from tqdm import tqdm
for idx, batch in enumerate(tqdm(model.val_dataloader())):
batch_x, label = batch
outputs.append(
model.validation_step((batch_x.to(device='cuda' if model.on_gpu else 'cpu'), label), idx)
)
summary_dict = model.validation_epoch_end(outputs)
print(summary_dict['log']['uar_score'])
# trainer.test()
outpath = Path(config_obj.train.outpath)
model_type = config_obj.model.type
parameters = logger.name
version = f'version_{logger.version}'
inference_out = f'{parameters}_test_out.csv'
from main_inference import prepare_dataloader
test_dataloader = prepare_dataloader(config)
with (outpath / model_type / parameters / version / inference_out).open(mode='w') as outfile:
outfile.write(f'file_name,prediction\n')
with torch.no_grad():
model.eval()
if torch.cuda.is_available():
model.cuda()
outputs = []
from tqdm import tqdm
for batch in tqdm(test_dataloader, total=len(test_dataloader)):
batch_x, file_name = batch
batch_x = batch_x.unsqueeze(0).to(device='cuda' if model.on_gpu else 'cpu')
y = model(batch_x).main_out
prediction = (y.squeeze() >= 0.5).int().item()
import variables as V
prediction = 'clear' if prediction == V.CLEAR else 'mask'
outfile.write(f'{file_name},{prediction}\n')
for idx, batch in enumerate(tqdm(model.val_dataloader()[0])):
batch_x, label = batch
batch_x = batch_x.to(device='cuda' if model.on_gpu else 'cpu')
label = label.to(device='cuda' if model.on_gpu else 'cpu')
outputs.append(
model.validation_step((batch_x, label), idx, 1)
)
summary_dict = model.validation_epoch_end([outputs])
print(summary_dict['log']['uar_score'])
# trainer.test()
outpath = Path(config_obj.train.outpath)
model_type = config_obj.model.type
parameters = logger.name
version = f'version_{logger.version}'
inference_out = f'{parameters}_test_out.csv'
from main_inference import prepare_dataloader
test_dataloader = prepare_dataloader(config)
with (outpath / model_type / parameters / version / inference_out).open(mode='w') as outfile:
outfile.write(f'file_name,prediction\n')
from tqdm import tqdm
for batch in tqdm(test_dataloader, total=len(test_dataloader)):
batch_x, file_name = batch
batch_x = batch_x.unsqueeze(0).to(device='cuda' if model.on_gpu else 'cpu')
y = model(batch_x).main_out
prediction = (y.squeeze() >= 0.5).int().item()
import variables as V
prediction = 'clear' if prediction == V.CLEAR else 'mask'
outfile.write(f'{file_name},{prediction}\n')
return model

View File

@ -23,7 +23,10 @@ from datasets.binar_masks import BinaryMasksDataset
def prepare_dataloader(config_obj):
mel_transforms = Compose([AudioToMel(n_mels=config_obj.data.n_mels), MelToImage()])
mel_transforms = Compose([
# Audio to Mel Transformations
AudioToMel(sr=config_obj.data.sr, n_mels=config_obj.data.n_mels, n_fft=config_obj.data.n_fft,
hop_length=config_obj.data.hop_length), MelToImage()])
transforms = Compose([NormalizeLocal(), ToTensor()])
dataset: Dataset = BinaryMasksDataset(config_obj.data.root, setting='test',

View File

@ -3,9 +3,9 @@ from argparse import Namespace
from torch import nn
from torch.nn import ModuleDict, ModuleList
from ml_lib.modules.blocks import ConvModule
from ml_lib.modules.blocks import ConvModule, LinearModule
from ml_lib.modules.utils import (LightningBaseModule, HorizontalSplitter,
HorizontalMerger)
HorizontalMerger, F_x)
from util.module_mixins import (BaseOptimizerMixin, BaseTrainMixin, BaseValMixin, BinaryMaskDatasetFunction,
BaseDataloadersMixin)
@ -54,15 +54,11 @@ class BandwiseConvClassifier(BinaryMaskDatasetFunction,
self.merge = HorizontalMerger(self.conv_dict['conv_3_1'].shape, self.n_band_sections)
self.full_1 = nn.Linear(self.flat.shape, self.params.lat_dim, self.params.bias)
self.full_2 = nn.Linear(self.full_1.out_features, self.full_1.out_features // 2, self.params.bias)
self.full_1 = LinearModule(self.flat.shape, self.params.lat_dim, **self.params.module_kwargs)
self.full_2 = LinearModule(self.full_1.shape, self.full_1.shape * 2, **self.params.module_kwargs)
self.full_3 = LinearModule(self.full_2.shape, self.full_2.out_features // 2, **self.params.module_kwargs)
self.full_out = nn.Linear(self.full_2.out_features, 1, self.params.bias)
# Utility Modules
self.dropout = nn.Dropout2d(self.params.dropout) if self.params.dropout else lambda x: x
self.activation = self.params.activation()
self.sigmoid = nn.Sigmoid()
self.full_out = LinearModule(self.full_3.shape, 1, bias=self.params.bias, activation=nn.Sigmoid)
def forward(self, batch, **kwargs):
tensors = self.split(batch)
@ -74,13 +70,8 @@ class BandwiseConvClassifier(BinaryMaskDatasetFunction,
tensors[idx] = self.conv_dict[f"conv_3_{idx}"](tensor)
tensor = self.merge(tensors)
tensor = self.flat(tensor)
tensor = self.full_1(tensor)
tensor = self.activation(tensor)
tensor = self.dropout(tensor)
tensor = self.full_2(tensor)
tensor = self.activation(tensor)
tensor = self.dropout(tensor)
tensor = self.full_3(tensor)
tensor = self.full_out(tensor)
tensor = self.sigmoid(tensor)
return Namespace(main_out=tensor)

View File

@ -1,12 +1,10 @@
from argparse import Namespace
from collections import defaultdict
import torch
from torch import nn
from torch.nn import ModuleDict, ModuleList
from torchcontrib.optim import SWA
from torch.nn import ModuleList
from ml_lib.modules.blocks import ConvModule
from ml_lib.modules.blocks import ConvModule, LinearModule
from ml_lib.modules.utils import (LightningBaseModule, Flatten, HorizontalSplitter)
from util.module_mixins import (BaseOptimizerMixin, BaseTrainMixin, BaseValMixin, BinaryMaskDatasetFunction,
BaseDataloadersMixin)
@ -59,49 +57,57 @@ class BandwiseConvMultiheadClassifier(BinaryMaskDatasetFunction,
self.in_shape = self.dataset.train_dataset.sample_shape
self.conv_filters = self.params.filters
self.criterion = nn.BCELoss()
self.n_band_sections = 8
self.n_band_sections = 4
k = 3 # Base Kernel Value
# Modules
# =============================================================================
self.split = HorizontalSplitter(self.in_shape, self.n_band_sections)
self.conv_dict = ModuleDict()
self.conv_dict.update({f"conv_1_{band_section}":
ConvModule(self.split.shape, self.conv_filters[0], 3, conv_stride=1, **self.params.module_kwargs)
for band_section in range(self.n_band_sections)}
)
self.conv_dict.update({f"conv_2_{band_section}":
ConvModule(self.conv_dict['conv_1_1'].shape, self.conv_filters[1], 3, conv_stride=1,
**self.params.module_kwargs) for band_section in range(self.n_band_sections)}
)
self.conv_dict.update({f"conv_3_{band_section}":
ConvModule(self.conv_dict['conv_2_1'].shape, self.conv_filters[2], 3, conv_stride=1,
**self.params.module_kwargs)
for band_section in range(self.n_band_sections)}
)
self.band_list = ModuleList()
for band in range(self.n_band_sections):
last_shape = self.split.shape
conv_list = ModuleList()
for filters in self.conv_filters:
conv_list.append(ConvModule(last_shape, filters, (k, k*4), conv_stride=(1, 2),
**self.params.module_kwargs))
last_shape = conv_list[-1].shape
# self.conv_list.append(ConvModule(last_shape, 1, 1, conv_stride=1, **self.params.module_kwargs))
# last_shape = self.conv_list[-1].shape
self.band_list.append(conv_list)
self.flat = Flatten(self.conv_dict['conv_3_1'].shape)
self.bandwise_deep_list_1 = ModuleList([
LinearModule(self.band_list[0][-1].shape, self.params.lat_dim * 4, **self.params.module_kwargs)
for _ in range(self.n_band_sections)])
self.bandwise_deep_list_2 = ModuleList([
LinearModule(self.params.lat_dim * 4, self.params.lat_dim * 2, **self.params.module_kwargs)
for _ in range(self.n_band_sections)])
self.bandwise_latent_list = ModuleList([
nn.Linear(self.flat.shape, self.params.lat_dim, self.params.bias) for _ in range(self.n_band_sections)])
self.bandwise_classifier_list = ModuleList([nn.Linear(self.params.lat_dim, 1, self.params.bias)
for _ in range(self.n_band_sections)])
LinearModule(self.params.lat_dim * 2, self.params.lat_dim, **self.params.module_kwargs)
for _ in range(self.n_band_sections)])
self.bandwise_classifier_list = ModuleList([
LinearModule(self.params.lat_dim, 1, bias=self.params.bias, activation=nn.Sigmoid)
for _ in range(self.n_band_sections)])
self.full_out = nn.Linear(self.n_band_sections, 1, self.params.bias)
# Utility Modules
self.sigmoid = nn.Sigmoid()
self.full_1 = LinearModule(self.n_band_sections, self.params.lat_dim * 4, **self.params.module_kwargs)
self.full_2 = LinearModule(self.full_1.shape, self.params.lat_dim * 2, **self.params.module_kwargs)
self.full_3 = LinearModule(self.full_2.shape, self.params.lat_dim, **self.params.module_kwargs)
self.full_out = LinearModule(self.full_3.shape, 1, bias=self.params.bias, activation=nn.Sigmoid)
def forward(self, batch, **kwargs):
tensors = self.split(batch)
for idx, tensor in enumerate(tensors):
tensor = self.conv_dict[f"conv_1_{idx}"](tensor)
tensor = self.conv_dict[f"conv_2_{idx}"](tensor)
tensor = self.conv_dict[f"conv_3_{idx}"](tensor)
tensor = self.flat(tensor)
for idx, (tensor, convs) in enumerate(zip(tensors, self.band_list)):
for conv in convs:
tensor = conv(tensor)
tensor = self.bandwise_deep_list_1[idx](tensor)
tensor = self.bandwise_deep_list_2[idx](tensor)
tensor = self.bandwise_latent_list[idx](tensor)
tensor = self.bandwise_classifier_list[idx](tensor)
tensors[idx] = self.sigmoid(tensor)
tensors[idx] = self.bandwise_classifier_list[idx](tensor)
tensor = torch.cat(tensors, dim=1)
tensor = self.full_1(tensor)
tensor = self.full_2(tensor)
tensor = self.full_3(tensor)
tensor = self.full_out(tensor)
tensor = self.sigmoid(tensor)
return Namespace(main_out=tensor, bands=tensors)

View File

@ -3,8 +3,8 @@ from argparse import Namespace
from torch import nn
from torch.nn import ModuleList
from ml_lib.modules.blocks import ConvModule
from ml_lib.modules.utils import LightningBaseModule, Flatten
from ml_lib.modules.blocks import ConvModule, LinearModule
from ml_lib.modules.utils import LightningBaseModule
from util.module_mixins import (BaseOptimizerMixin, BaseTrainMixin, BaseValMixin, BinaryMaskDatasetFunction,
BaseDataloadersMixin)
@ -38,38 +38,21 @@ class ConvClassifier(BinaryMaskDatasetFunction,
for filters in self.conv_filters:
self.conv_list.append(ConvModule(last_shape, filters, (k, k*2), conv_stride=2, **self.params.module_kwargs))
last_shape = self.conv_list[-1].shape
self.conv_list.appen(ConvModule(last_shape, filters, 1, conv_stride=1, **self.params.module_kwargs))
last_shape = self.conv_list[-1].shape
self.conv_list.appen(ConvModule(last_shape, 1, 1, conv_stride=1, **self.params.module_kwargs))
last_shape = self.conv_list[-1].shape
k = k+2
# self.conv_list.append(ConvModule(last_shape, 1, 1, conv_stride=1, **self.params.module_kwargs))
# last_shape = self.conv_list[-1].shape
self.flat = Flatten(self.conv_list[-1].shape)
self.full_1 = nn.Linear(self.flat.shape, self.params.lat_dim, self.params.bias)
self.full_2 = nn.Linear(self.full_1.out_features, self.full_1.out_features * 2, self.params.bias)
self.full_3 = nn.Linear(self.full_2.out_features, self.full_2.out_features // 2, self.params.bias)
self.full_1 = LinearModule(self.flat.shape, self.params.lat_dim, **self.params.module_kwargs)
self.full_2 = LinearModule(self.full_1.out_features, self.full_1.out_features * 2, self.params.bias)
self.full_3 = LinearModule(self.full_2.out_features, self.full_2.out_features // 2, self.params.bias)
self.full_out = nn.Linear(self.full_3.out_features, 1, self.params.bias)
# Utility Modules
self.dropout = nn.Dropout2d(self.params.dropout) if self.params.dropout else lambda x: x
self.activation = self.params.activation()
self.sigmoid = nn.Sigmoid()
self.full_out = LinearModule(self.full_3.out_features, 1, bias=self.params.bias, activation=nn.Sigmoid)
def forward(self, batch, **kwargs):
tensor = batch
for conv in self.conv_list:
tensor = conv(tensor)
tensor = self.flat(tensor)
tensor = self.full_1(tensor)
tensor = self.activation(tensor)
tensor = self.dropout(tensor)
tensor = self.full_2(tensor)
tensor = self.activation(tensor)
tensor = self.dropout(tensor)
tensor = self.full_3(tensor)
tensor = self.activation(tensor)
tensor = self.dropout(tensor)
tensor = self.full_out(tensor)
tensor = self.sigmoid(tensor)
return Namespace(main_out=tensor)

View File

@ -14,6 +14,7 @@ from torchvision.transforms import Compose, RandomApply
from ml_lib.audio_toolset.audio_augmentation import NoiseInjection, LoudnessManipulator, ShiftTime
from ml_lib.audio_toolset.audio_io import AudioToMel, MelToImage, NormalizeLocal
from ml_lib.modules.utils import LightningBaseModule
from ml_lib.utils.transforms import ToTensor
import variables as V
@ -22,6 +23,7 @@ import variables as V
class BaseOptimizerMixin:
def configure_optimizers(self):
assert isinstance(self, LightningBaseModule)
opt = Adam(params=self.parameters(), lr=self.params.lr)
if self.params.sto_weight_avg:
opt = SWA(opt, swa_start=10, swa_freq=5, swa_lr=0.05)
@ -33,7 +35,7 @@ class BaseOptimizerMixin:
opt.swap_swa_sgd()
def on_epoch_end(self):
if False: # FIXME: Pass a new parameter to model args.
if self.params.opt_reset_interval:
if self.current_epoch % self.params.opt_reset_interval == 0:
for opt in self.trainer.optimizers:
opt.state = defaultdict(dict)
@ -42,6 +44,7 @@ class BaseOptimizerMixin:
class BaseTrainMixin:
def training_step(self, batch_xy, batch_nb, *args, **kwargs):
assert isinstance(self, LightningBaseModule)
batch_x, batch_y = batch_xy
y = self(batch_x).main_out
loss = self.criterion(y, batch_y)
@ -60,7 +63,7 @@ class BaseValMixin:
absolute_loss = L1Loss()
def validation_step(self, batch_xy, batch_idx, *args, **kwargs):
def validation_step(self, batch_xy, batch_idx, dataloader_idx, *args, **kwargs):
batch_x, batch_y = batch_xy
y = self(batch_x).main_out
val_bce_loss = self.criterion(y, batch_y)
@ -69,52 +72,63 @@ class BaseValMixin:
batch_idx=batch_idx, y=y, batch_y=batch_y
)
def validation_epoch_end(self, outputs):
keys = list(outputs[0].keys())
def validation_epoch_end(self, outputs, *args, **kwargs):
summary_dict = dict(log=dict())
for output_idx, output in enumerate(outputs):
keys = list(output[0].keys())
ident = '' if output_idx == 0 else '_train'
summary_dict['log'].update({f'mean{ident}_{key}': torch.mean(torch.stack([output[key]
for output in output]))
for key in keys if 'loss' in key}
)
summary_dict = dict(log={f'mean_{key}': torch.mean(torch.stack([output[key]
for output in outputs]))
for key in keys if 'loss' in key})
# UnweightedAverageRecall
y_true = torch.cat([output['batch_y'] for output in output]) .cpu().numpy()
y_pred = torch.cat([output['y'] for output in output]).squeeze().cpu().numpy()
# UnweightedAverageRecall
y_true = torch.cat([output['batch_y'] for output in outputs]) .cpu().numpy()
y_pred = torch.cat([output['y'] for output in outputs]).squeeze().cpu().numpy()
y_pred = (y_pred >= 0.5).astype(np.float32)
y_pred = (y_pred >= 0.5).astype(np.float32)
uar_score = sklearn.metrics.recall_score(y_true, y_pred, labels=[0, 1], average='macro',
sample_weight=None, zero_division='warn')
uar_score = sklearn.metrics.recall_score(y_true, y_pred, labels=[0, 1], average='macro',
sample_weight=None, zero_division='warn')
summary_dict['log'].update(uar_score=uar_score)
summary_dict['log'].update({f'uar{ident}_score': uar_score})
return summary_dict
class BinaryMaskDatasetFunction:
def build_dataset(self):
assert isinstance(self, LightningBaseModule)
# Dataset
# =============================================================================
# Mel Transforms
mel_transforms = Compose([
# Audio to Mel Transformations
AudioToMel(n_mels=self.params.n_mels), MelToImage()])
AudioToMel(sr=self.params.sr, n_mels=self.params.n_mels, n_fft=self.params.n_fft,
hop_length=self.params.hop_length), MelToImage()])
# Data Augmentations
aug_transforms = Compose([
RandomApply([
NoiseInjection(self.params.noise_ratio),
LoudnessManipulator(self.params.loudness_ratio),
ShiftTime(self.params.shift_ratio)], p=0.5),
NoiseInjection(self.params.noise_ratio),
LoudnessManipulator(self.params.loudness_ratio),
ShiftTime(self.params.shift_ratio)], p=0.5),
# Utility
NormalizeLocal(), ToTensor()
])
val_transforms = Compose([NormalizeLocal(), ToTensor()])
# sampler = RandomSampler(train_dataset, True, len(train_dataset)) if params['bootstrap'] else None
# Datasets
from datasets.binar_masks import BinaryMasksDataset
dataset = Namespace(
**dict(
train_dataset=BinaryMasksDataset(self.params.root, setting=V.DATA_OPTIONS.train, mixup=self.params.mixup,
train_dataset=BinaryMasksDataset(self.params.root, setting=V.DATA_OPTIONS.train,
mixup=self.params.mixup,
mel_transforms=mel_transforms, transforms=aug_transforms),
val_train_dataset=BinaryMasksDataset(self.params.root, setting=V.DATA_OPTIONS.train,
mel_transforms=mel_transforms, transforms=val_transforms),
val_dataset=BinaryMasksDataset(self.params.root, setting=V.DATA_OPTIONS.devel,
mel_transforms=mel_transforms, transforms=val_transforms),
test_dataset=BinaryMasksDataset(self.params.root, setting=V.DATA_OPTIONS.test,
@ -142,6 +156,9 @@ class BaseDataloadersMixin(ABC):
# Validation Dataloader
def val_dataloader(self):
return DataLoader(dataset=self.dataset.val_dataset, shuffle=True,
batch_size=self.params.batch_size,
num_workers=self.params.worker)
val_dataloader = DataLoader(dataset=self.dataset.val_dataset, shuffle=True,
batch_size=self.params.batch_size, num_workers=self.params.worker)
train_dataloader = DataLoader(self.dataset.val_train_dataset, num_workers=self.params.worker,
batch_size=self.params.batch_size, shuffle=False)
return [val_dataloader, train_dataloader]