78 lines
		
	
	
		
			3.7 KiB
		
	
	
	
		
			Python
		
	
	
	
	
	
			
		
		
	
	
			78 lines
		
	
	
		
			3.7 KiB
		
	
	
	
		
			Python
		
	
	
	
	
	
| from argparse import Namespace
 | |
| 
 | |
| from torch import nn
 | |
| from torch.nn import ModuleDict, ModuleList
 | |
| 
 | |
| from ml_lib.modules.blocks import ConvModule, LinearModule
 | |
| from ml_lib.modules.utils import (LightningBaseModule, HorizontalSplitter,
 | |
|                                   HorizontalMerger, F_x)
 | |
| from util.module_mixins import (BaseOptimizerMixin, BaseTrainMixin, BaseValMixin, BinaryMaskDatasetFunction,
 | |
|                                 BaseDataloadersMixin)
 | |
| 
 | |
| 
 | |
| class BandwiseConvClassifier(BinaryMaskDatasetFunction,
 | |
|                              BaseDataloadersMixin,
 | |
|                              BaseTrainMixin,
 | |
|                              BaseValMixin,
 | |
|                              BaseOptimizerMixin,
 | |
|                              LightningBaseModule
 | |
|                              ):
 | |
| 
 | |
|     def __init__(self, hparams):
 | |
|         super(BandwiseConvClassifier, self).__init__(hparams)
 | |
| 
 | |
|         # Dataset
 | |
|         # =============================================================================
 | |
|         self.dataset = self.build_dataset()
 | |
| 
 | |
|         # Model Paramters
 | |
|         # =============================================================================
 | |
|         # Additional parameters
 | |
|         self.in_shape = self.dataset.train_dataset.sample_shape
 | |
|         self.conv_filters = self.params.filters
 | |
|         self.criterion = nn.BCELoss()
 | |
|         self.n_band_sections = 4
 | |
| 
 | |
|         # Modules
 | |
|         # =============================================================================
 | |
|         self.split = HorizontalSplitter(self.in_shape, self.n_band_sections)
 | |
|         self.conv_dict = ModuleDict()
 | |
| 
 | |
|         self.conv_dict.update({f"conv_1_{band_section}":
 | |
|                                    ConvModule(self.split.shape, self.conv_filters[0], 3, conv_stride=1, **self.params.module_kwargs)
 | |
|                                for band_section in range(self.n_band_sections)}
 | |
|                               )
 | |
|         self.conv_dict.update({f"conv_2_{band_section}":
 | |
|                                    ConvModule(self.conv_dict['conv_1_1'].shape, self.conv_filters[1], 3, conv_stride=1,
 | |
|                                               **self.params.module_kwargs) for band_section in range(self.n_band_sections)}
 | |
|                               )
 | |
|         self.conv_dict.update({f"conv_3_{band_section}":
 | |
|                                    ConvModule(self.conv_dict['conv_2_1'].shape, self.conv_filters[2], 3, conv_stride=1,
 | |
|                                               **self.params.module_kwargs)
 | |
|                                for band_section in range(self.n_band_sections)}
 | |
|                               )
 | |
| 
 | |
|         self.merge = HorizontalMerger(self.conv_dict['conv_3_1'].shape, self.n_band_sections)
 | |
| 
 | |
|         self.full_1 = LinearModule(self.flat.shape, self.params.lat_dim, **self.params.module_kwargs)
 | |
|         self.full_2 = LinearModule(self.full_1.shape, self.full_1.shape * 2, **self.params.module_kwargs)
 | |
|         self.full_3 = LinearModule(self.full_2.shape, self.full_2.out_features // 2, **self.params.module_kwargs)
 | |
| 
 | |
|         self.full_out = LinearModule(self.full_3.shape, 1, bias=self.params.bias, activation=nn.Sigmoid)
 | |
| 
 | |
|     def forward(self, batch, **kwargs):
 | |
|         tensors = self.split(batch)
 | |
|         for idx, tensor in enumerate(tensors):
 | |
|             tensors[idx] = self.conv_dict[f"conv_1_{idx}"](tensor)
 | |
|         for idx, tensor in enumerate(tensors):
 | |
|             tensors[idx] = self.conv_dict[f"conv_2_{idx}"](tensor)
 | |
|         for idx, tensor in enumerate(tensors):
 | |
|             tensors[idx] = self.conv_dict[f"conv_3_{idx}"](tensor)
 | |
| 
 | |
|         tensor = self.merge(tensors)
 | |
|         tensor = self.full_1(tensor)
 | |
|         tensor = self.full_2(tensor)
 | |
|         tensor = self.full_3(tensor)
 | |
|         tensor = self.full_out(tensor)
 | |
|         return Namespace(main_out=tensor)
 | 
