2021-05-11 10:31:35 +02:00

81 lines
3.4 KiB
Python

import numpy as np
from pathlib import Path
from environments import helpers as h
class BaseFactory:
LEVELS_DIR = 'levels'
_level_idx = 0
_agent_start_idx = 1
_is_free_cell = 0
_is_occupied_cell = 1
def __init__(self, level='simple', n_agents=1, max_steps=1e3):
self.n_agents = n_agents
self.max_steps = max_steps
self.level = h.one_hot_level(
h.parse_level(Path(__file__).parent / self.LEVELS_DIR / f'{level}.txt')
)
self.slice_strings = {0: 'level', **{i: f'agent#{i}' for i in range(1, self.n_agents+1)}}
self.reset()
def reset(self):
self.done = False
self.steps = 0
# Agent placement ...
agents = np.zeros((self.n_agents, *self.level.shape), dtype=np.int8)
floor_tiles = np.argwhere(self.level == self._is_free_cell)
# ... on random positions
np.random.shuffle(floor_tiles)
for i, (x, y) in enumerate(floor_tiles[:self.n_agents]):
agents[i, x, y] = self._is_occupied_cell
# state.shape = level, agent 1,..., agent n,
self.state = np.concatenate((np.expand_dims(self.level, axis=0), agents), axis=0)
# Returns State, Reward, Done, Info
return self.state, 0, self.done, {}
def step(self, actions):
assert type(actions) in [int, list]
if type(actions) == int:
actions = [actions]
self.steps += 1
r = 0
collision_vecs = np.zeros((self.n_agents, self.state.shape[0])) # n_agents x n_slices
for i, a in enumerate(actions):
old_pos, new_pos, valid = h.check_agent_move(state=self.state, dim=i+self._agent_start_idx, action=a)
if valid: # Does not collide width level boundrys
self.make_move(i, old_pos, new_pos)
else: # Trying to leave the level
collision_vecs[i, self._level_idx] = self._is_occupied_cell # Collides with level boundrys
# For each agent check for abitrary collions:
for i in range(self.n_agents): # Note: might as well save the positions (redundant): return value of make_move
agent_slice = self.state[i+self._agent_start_idx]
x, y = np.argwhere(agent_slice == self._is_occupied_cell)[0] # current position of agent i
collisions_vec = self.state[:, x, y].copy() # "vertical fiber" at position of agent i
collisions_vec[i+self._agent_start_idx] = self._is_free_cell # no self-collisions
collision_vecs[i] += collisions_vec
reward, info = self.step_core(collision_vecs, actions, r)
r += reward
if self.steps >= self.max_steps:
self.done = True
return self.state, r, self.done, info
def make_move(self, agent_i, old_pos, new_pos):
(x, y), (x_new, y_new) = old_pos, new_pos
self.state[agent_i+self._agent_start_idx, x, y] = self._is_free_cell
self.state[agent_i+self._agent_start_idx, x_new, y_new] = self._is_occupied_cell
return new_pos
@property
def free_cells(self) -> np.ndarray:
free_cells = self.state.sum(0)
free_cells = np.argwhere(free_cells == self._is_free_cell)
np.random.shuffle(free_cells)
return free_cells
def step_core(self, collisions_vec, actions, r):
# Returns: Reward, Info
# Set to "raise NotImplementedError"
return 0, {} # What is returned here?