import numpy as np from pathlib import Path from environments import helpers as h class BaseFactory: LEVELS_DIR = 'levels' _level_idx = 0 _agent_start_idx = 1 _is_free_cell = 0 _is_occupied_cell = 1 def __init__(self, level='simple', n_agents=1, max_steps=1e3): self.n_agents = n_agents self.max_steps = max_steps self.level = h.one_hot_level( h.parse_level(Path(__file__).parent / self.LEVELS_DIR / f'{level}.txt') ) self.slice_strings = {0: 'level', **{i: f'agent#{i}' for i in range(1, self.n_agents+1)}} self.reset() def reset(self): self.done = False self.steps = 0 # Agent placement ... agents = np.zeros((self.n_agents, *self.level.shape), dtype=np.int8) floor_tiles = np.argwhere(self.level == self._is_free_cell) # ... on random positions np.random.shuffle(floor_tiles) for i, (x, y) in enumerate(floor_tiles[:self.n_agents]): agents[i, x, y] = self._is_occupied_cell # state.shape = level, agent 1,..., agent n, self.state = np.concatenate((np.expand_dims(self.level, axis=0), agents), axis=0) # Returns State, Reward, Done, Info return self.state, 0, self.done, {} def step(self, actions): assert type(actions) in [int, list] if type(actions) == int: actions = [actions] self.steps += 1 r = 0 collision_vecs = np.zeros((self.n_agents, self.state.shape[0])) # n_agents x n_slices for i, a in enumerate(actions): old_pos, new_pos, valid = h.check_agent_move(state=self.state, dim=i+self._agent_start_idx, action=a) if valid: # Does not collide width level boundrys self.make_move(i, old_pos, new_pos) else: # Trying to leave the level collision_vecs[i, self._level_idx] = self._is_occupied_cell # Collides with level boundrys # For each agent check for abitrary collions: for i in range(self.n_agents): # Note: might as well save the positions (redundant): return value of make_move agent_slice = self.state[i+self._agent_start_idx] x, y = np.argwhere(agent_slice == self._is_occupied_cell)[0] # current position of agent i collisions_vec = self.state[:, x, y].copy() # "vertical fiber" at position of agent i collisions_vec[i+self._agent_start_idx] = self._is_free_cell # no self-collisions collision_vecs[i] += collisions_vec reward, info = self.step_core(collision_vecs, actions, r) r += reward if self.steps >= self.max_steps: self.done = True return self.state, r, self.done, info def make_move(self, agent_i, old_pos, new_pos): (x, y), (x_new, y_new) = old_pos, new_pos self.state[agent_i+self._agent_start_idx, x, y] = self._is_free_cell self.state[agent_i+self._agent_start_idx, x_new, y_new] = self._is_occupied_cell return new_pos @property def free_cells(self) -> np.ndarray: free_cells = self.state.sum(0) free_cells = np.argwhere(free_cells == self._is_free_cell) np.random.shuffle(free_cells) return free_cells def step_core(self, collisions_vec, actions, r): # Returns: Reward, Info # Set to "raise NotImplementedError" return 0, {} # What is returned here?