mirror of
https://github.com/illiumst/marl-factory-grid.git
synced 2025-05-23 07:16:44 +02:00
Merge branch 'main' into unit_testing
This commit is contained in:
commit
f25f90a78b
@ -14,8 +14,8 @@ build-job: # This job runs in the build stage, which runs first.
|
||||
image: python:slim
|
||||
script:
|
||||
- echo "Compiling the code..."
|
||||
- pip install -U twine
|
||||
- pip install twine --upgrade
|
||||
- python setup.py sdist
|
||||
- echo "Compile complete."
|
||||
- twine upload dist/*
|
||||
- twine upload dist/* --username $USER_NAME --password $API_KEY --repository marl-factory-grid
|
||||
- echo "Upload complete."
|
||||
|
@ -22,13 +22,6 @@ Agents:
|
||||
- Inventory
|
||||
- DropOffLocations
|
||||
- Maintainers
|
||||
# This is special for agents, as each one is differten and can act as an adversary e.g.
|
||||
Positions:
|
||||
- (16, 7)
|
||||
- (16, 6)
|
||||
- (16, 3)
|
||||
- (16, 4)
|
||||
- (16, 5)
|
||||
Entities:
|
||||
Batteries:
|
||||
initial_charge: 0.8
|
||||
|
55
marl_factory_grid/configs/eight_puzzle.yaml
Normal file
55
marl_factory_grid/configs/eight_puzzle.yaml
Normal file
@ -0,0 +1,55 @@
|
||||
Agents:
|
||||
Wolfgang:
|
||||
Actions:
|
||||
- Noop
|
||||
- Move4
|
||||
Observations:
|
||||
- Other
|
||||
- Walls
|
||||
- Destination
|
||||
Clones:
|
||||
- Juergen
|
||||
- Soeren
|
||||
- Walter
|
||||
- Siggi
|
||||
- Dennis
|
||||
- Karl-Heinz
|
||||
- Kevin
|
||||
is_blocking_pos: true
|
||||
Entities:
|
||||
Destinations:
|
||||
# Let them spawn on closed doors and agent positions
|
||||
ignore_blocking: true
|
||||
# We need a special spawn rule...
|
||||
spawnrule:
|
||||
# ...which assigns the destinations per agent
|
||||
SpawnDestinationsPerAgent:
|
||||
# we use this parameter
|
||||
coords_or_quantity:
|
||||
# to enable and assign special positions per agent
|
||||
Wolfgang: 1
|
||||
Karl-Heinz: 1
|
||||
Kevin: 1
|
||||
Juergen: 1
|
||||
Soeren: 1
|
||||
Walter: 1
|
||||
Siggi: 1
|
||||
Dennis: 1
|
||||
General:
|
||||
env_seed: 69
|
||||
individual_rewards: true
|
||||
level_name: eight_puzzle
|
||||
pomdp_r: 3
|
||||
verbose: True
|
||||
tests: false
|
||||
|
||||
Rules:
|
||||
# Utilities
|
||||
WatchCollisions:
|
||||
done_at_collisions: false
|
||||
|
||||
# Done Conditions
|
||||
DoneAtDestinationReach:
|
||||
condition: simultanious
|
||||
DoneAtMaxStepsReached:
|
||||
max_steps: 500
|
@ -97,20 +97,26 @@ class Factory(gym.Env):
|
||||
return self.state.entities[item]
|
||||
|
||||
def reset(self) -> (dict, dict):
|
||||
|
||||
# Reset information the state holds
|
||||
self.state.reset()
|
||||
|
||||
# Reset Information the GlobalEntity collection holds.
|
||||
self.state.entities.reset()
|
||||
|
||||
# All is set up, trigger entity spawn with variable pos
|
||||
self.state.rules.do_all_reset(self.state)
|
||||
|
||||
# Build initial observations for all agents
|
||||
return self.obs_builder.refresh_and_build_for_all(self.state)
|
||||
self.obs_builder.reset(self.state)
|
||||
return self.obs_builder.build_for_all(self.state)
|
||||
|
||||
def manual_step_init(self) -> List[Result]:
|
||||
self.state.curr_step += 1
|
||||
|
||||
# Main Agent Step
|
||||
pre_step_result = self.state.rules.tick_pre_step_all(self)
|
||||
self.obs_builder.reset_struc_obs_block(self.state)
|
||||
self.obs_builder.reset(self.state)
|
||||
return pre_step_result
|
||||
|
||||
def manual_get_named_agent_obs(self, agent_name: str) -> (List[str], np.ndarray):
|
||||
@ -164,7 +170,7 @@ class Factory(gym.Env):
|
||||
|
||||
info.update(step_reward=sum(reward), step=self.state.curr_step)
|
||||
|
||||
obs = self.obs_builder.refresh_and_build_for_all(self.state)
|
||||
obs = self.obs_builder.build_for_all(self.state)
|
||||
return None, [x for x in obs.values()], reward, done, info
|
||||
|
||||
def summarize_step_results(self, tick_results: list, done_check_results: list) -> (int, dict, bool):
|
||||
|
@ -1,6 +1,5 @@
|
||||
from marl_factory_grid.environment.entity.agent import Agent
|
||||
from marl_factory_grid.environment.groups.collection import Collection
|
||||
from marl_factory_grid.environment.rules import SpawnAgents
|
||||
|
||||
|
||||
class Agents(Collection):
|
||||
@ -8,7 +7,7 @@ class Agents(Collection):
|
||||
|
||||
@property
|
||||
def spawn_rule(self):
|
||||
return {SpawnAgents.__name__: {}}
|
||||
return {}
|
||||
|
||||
@property
|
||||
def var_is_blocking_light(self):
|
||||
|
@ -27,7 +27,7 @@ class Entities(Objects):
|
||||
@property
|
||||
def floorlist(self):
|
||||
shuffle(self._floor_positions)
|
||||
return self._floor_positions
|
||||
return [x for x in self._floor_positions]
|
||||
|
||||
def __init__(self, floor_positions):
|
||||
self._floor_positions = floor_positions
|
||||
|
@ -70,28 +70,22 @@ class SpawnAgents(Rule):
|
||||
|
||||
def on_reset(self, state):
|
||||
agents = state[c.AGENT]
|
||||
empty_positions = state.entities.empty_positions[:len(state.agents_conf)]
|
||||
for agent_name, agent_conf in state.agents_conf.items():
|
||||
empty_positions = state.entities.empty_positions
|
||||
actions = agent_conf['actions'].copy()
|
||||
observations = agent_conf['observations'].copy()
|
||||
positions = agent_conf['positions'].copy()
|
||||
other = agent_conf['other'].copy()
|
||||
if positions:
|
||||
shuffle(positions)
|
||||
while True:
|
||||
try:
|
||||
pos = positions.pop()
|
||||
except IndexError:
|
||||
raise ValueError(f'It was not possible to spawn an Agent on the available position: '
|
||||
f'\n{agent_conf["positions"].copy()}')
|
||||
if bool(agents.by_pos(pos)) or not state.check_pos_validity(pos):
|
||||
continue
|
||||
else:
|
||||
agents.add_item(Agent(actions, observations, pos, str_ident=agent_name, **other))
|
||||
break
|
||||
|
||||
if position := h.get_first(x for x in positions if x in empty_positions):
|
||||
assert state.check_pos_validity(position), 'smth went wrong....'
|
||||
agents.add_item(Agent(actions, observations, position, str_ident=agent_name, **other))
|
||||
elif positions:
|
||||
raise ValueError(f'It was not possible to spawn an Agent on the available position: '
|
||||
f'\n{agent_conf["positions"].copy()}')
|
||||
else:
|
||||
agents.add_item(Agent(actions, observations, empty_positions.pop(), str_ident=agent_name, **other))
|
||||
pass
|
||||
return []
|
||||
|
||||
|
||||
class DoneAtMaxStepsReached(Rule):
|
||||
@ -103,7 +97,7 @@ class DoneAtMaxStepsReached(Rule):
|
||||
def on_check_done(self, state):
|
||||
if self.max_steps <= state.curr_step:
|
||||
return [DoneResult(validity=c.VALID, identifier=self.name)]
|
||||
return [DoneResult(validity=c.NOT_VALID, identifier=self.name)]
|
||||
return []
|
||||
|
||||
|
||||
class AssignGlobalPositions(Rule):
|
||||
@ -130,7 +124,7 @@ class WatchCollisions(Rule):
|
||||
|
||||
def tick_post_step(self, state) -> List[TickResult]:
|
||||
self.curr_done = False
|
||||
pos_with_collisions = state.get_all_pos_with_collisions()
|
||||
pos_with_collisions = state.get_collision_positions()
|
||||
results = list()
|
||||
for pos in pos_with_collisions:
|
||||
guests = [x for x in state.entities.pos_dict[pos] if x.var_can_collide]
|
||||
|
5
marl_factory_grid/levels/eight_puzzle.txt
Normal file
5
marl_factory_grid/levels/eight_puzzle.txt
Normal file
@ -0,0 +1,5 @@
|
||||
#####
|
||||
#---#
|
||||
#---#
|
||||
#---#
|
||||
#####
|
@ -60,7 +60,7 @@ class BatteryDecharge(Rule):
|
||||
|
||||
batteries.by_entity(agent).decharge(energy_consumption)
|
||||
|
||||
results.append(TickResult(self.name, entity=agent, validity=c.VALID))
|
||||
results.append(TickResult(self.name, entity=agent, validity=c.VALID, value=energy_consumption))
|
||||
|
||||
return results
|
||||
|
||||
|
@ -22,7 +22,7 @@ class DoneOnAllDirtCleaned(Rule):
|
||||
def on_check_done(self, state) -> [DoneResult]:
|
||||
if len(state[d.DIRT]) == 0 and state.curr_step:
|
||||
return [DoneResult(validity=c.VALID, identifier=self.name, reward=self.reward)]
|
||||
return [DoneResult(validity=c.NOT_VALID, identifier=self.name)]
|
||||
return []
|
||||
|
||||
|
||||
class RespawnDirt(Rule):
|
||||
@ -81,5 +81,6 @@ class EntitiesSmearDirtOnMove(Rule):
|
||||
old_pos_dirt = next(iter(old_pos_dirt))
|
||||
if smeared_dirt := round(old_pos_dirt.amount * self.smear_ratio, 2):
|
||||
if state[d.DIRT].spawn(entity.pos, amount=smeared_dirt):
|
||||
results.append(TickResult(identifier=self.name, entity=entity, validity=c.VALID))
|
||||
results.append(TickResult(identifier=self.name, entity=entity,
|
||||
validity=c.VALID, value=smeared_dirt))
|
||||
return results
|
||||
|
@ -1,7 +1,4 @@
|
||||
from .actions import DestAction
|
||||
from .entitites import Destination
|
||||
from .groups import Destinations
|
||||
from .rules import (DoneAtDestinationReachAll,
|
||||
DoneAtDestinationReachAny,
|
||||
SpawnDestinationsPerAgent,
|
||||
DestinationReachReward)
|
||||
from .rules import (DoneAtDestinationReach, SpawnDestinationsPerAgent, DestinationReachReward)
|
||||
|
@ -54,3 +54,6 @@ class Destination(Entity):
|
||||
|
||||
def mark_as_reached(self):
|
||||
self._was_reached = True
|
||||
|
||||
def unmark_as_reached(self):
|
||||
self._was_reached = False
|
||||
|
@ -9,6 +9,13 @@ from marl_factory_grid.environment import constants as c
|
||||
|
||||
from marl_factory_grid.modules.destinations import constants as d
|
||||
from marl_factory_grid.modules.destinations.entitites import Destination
|
||||
from marl_factory_grid.utils.states import Gamestate
|
||||
|
||||
|
||||
ANY = 'any'
|
||||
ALL = 'all'
|
||||
SIMULTANOIUS = 'simultanious'
|
||||
CONDITIONS =[ALL, ANY, SIMULTANOIUS]
|
||||
|
||||
|
||||
class DestinationReachReward(Rule):
|
||||
@ -48,9 +55,9 @@ class DestinationReachReward(Rule):
|
||||
return results
|
||||
|
||||
|
||||
class DoneAtDestinationReachAll(DestinationReachReward):
|
||||
class DoneAtDestinationReach(DestinationReachReward):
|
||||
|
||||
def __init__(self, reward_at_done=d.REWARD_DEST_DONE, **kwargs):
|
||||
def __init__(self, condition='any', reward_at_done=d.REWARD_DEST_DONE, **kwargs):
|
||||
"""
|
||||
This rule triggers and sets the done flag if ALL Destinations have been reached.
|
||||
|
||||
@ -59,68 +66,79 @@ class DoneAtDestinationReachAll(DestinationReachReward):
|
||||
:type dest_reach_reward: float
|
||||
:param dest_reach_reward: Specify the reward, agents get when reaching a single destination.
|
||||
"""
|
||||
super(DoneAtDestinationReachAll, self).__init__(**kwargs)
|
||||
super().__init__(**kwargs)
|
||||
self.condition = condition
|
||||
self.reward = reward_at_done
|
||||
assert condition in CONDITIONS
|
||||
|
||||
def on_check_done(self, state) -> List[DoneResult]:
|
||||
if all(x.was_reached() for x in state[d.DESTINATION]):
|
||||
return [DoneResult(self.name, validity=c.VALID, reward=self.reward)]
|
||||
return [DoneResult(self.name, validity=c.NOT_VALID)]
|
||||
|
||||
|
||||
class DoneAtDestinationReachAny(DestinationReachReward):
|
||||
|
||||
def __init__(self, reward_at_done=d.REWARD_DEST_DONE, **kwargs):
|
||||
f"""
|
||||
This rule triggers and sets the done flag if ANY Destinations has been reached.
|
||||
!!! IMPORTANT: 'reward_at_done' is shared between the agents; 'dest_reach_reward' is bound to a specific one.
|
||||
|
||||
:type reward_at_done: float
|
||||
:param reward_at_done: Specifies the reward, all agent get, when any destinations has been reached.
|
||||
Default {d.REWARD_DEST_DONE}
|
||||
:type dest_reach_reward: float
|
||||
:param dest_reach_reward: Specify a single agents reward forreaching a single destination.
|
||||
Default {d.REWARD_DEST_REACHED}
|
||||
"""
|
||||
super(DoneAtDestinationReachAny, self).__init__(**kwargs)
|
||||
self.reward = reward_at_done
|
||||
|
||||
def on_check_done(self, state) -> List[DoneResult]:
|
||||
if any(x.was_reached() for x in state[d.DESTINATION]):
|
||||
return [DoneResult(self.name, validity=c.VALID, reward=d.REWARD_DEST_REACHED)]
|
||||
return []
|
||||
if self.condition == ANY:
|
||||
if any(x.was_reached() for x in state[d.DESTINATION]):
|
||||
return [DoneResult(self.name, validity=c.VALID, reward=self.reward)]
|
||||
elif self.condition == ALL:
|
||||
if all(x.was_reached() for x in state[d.DESTINATION]):
|
||||
return [DoneResult(self.name, validity=c.VALID, reward=self.reward)]
|
||||
elif self.condition == SIMULTANOIUS:
|
||||
if all(x.was_reached() for x in state[d.DESTINATION]):
|
||||
return [DoneResult(self.name, validity=c.VALID, reward=self.reward)]
|
||||
else:
|
||||
for dest in state[d.DESTINATION]:
|
||||
if dest.was_reached():
|
||||
for agent in state[c.AGENT].by_pos(dest.pos):
|
||||
if dest.bound_entity:
|
||||
if dest.bound_entity == agent:
|
||||
pass
|
||||
else:
|
||||
dest.unmark_as_reached()
|
||||
return [DoneResult(f'{dest}_unmarked_as_reached',
|
||||
validity=c.NOT_VALID, entity=dest)]
|
||||
else:
|
||||
pass
|
||||
else:
|
||||
raise ValueError('Check spelling of Parameter "condition".')
|
||||
|
||||
|
||||
class SpawnDestinationsPerAgent(Rule):
|
||||
def __init__(self, coords_or_quantity: Dict[str, List[Tuple[int, int]]]):
|
||||
def __init__(self, coords_or_quantity: Dict[str, List[Tuple[int, int] | int]]):
|
||||
"""
|
||||
Special rule, that spawn distinations, that are bound to a single agent a fixed set of positions.
|
||||
Usefull for introducing specialists, etc. ..
|
||||
|
||||
!!! This rule does not introduce any reward or done condition.
|
||||
|
||||
:type coords_or_quantity: Dict[str, List[Tuple[int, int]]
|
||||
:param coords_or_quantity: Please provide a dictionary with agent names as keys; and a list of possible
|
||||
destiantion coords as value. Example: {Wolfgang: [(0, 0), (1, 1), ...]}
|
||||
"""
|
||||
super(Rule, self).__init__()
|
||||
self.per_agent_positions = {key: [ast.literal_eval(x) for x in val] for key, val in coords_or_quantity.items()}
|
||||
self.per_agent_positions = dict()
|
||||
for agent_name, value in coords_or_quantity.items():
|
||||
if isinstance(value, int):
|
||||
per_agent_d = {agent_name: value}
|
||||
else:
|
||||
per_agent_d = {agent_name: [ast.literal_eval(x) for x in value]}
|
||||
self.per_agent_positions.update(**per_agent_d)
|
||||
|
||||
def on_reset(self, state, lvl_map):
|
||||
for (agent_name, position_list) in self.per_agent_positions.items():
|
||||
def on_reset(self, state: Gamestate):
|
||||
for (agent_name, coords_or_quantity) in self.per_agent_positions.items():
|
||||
agent = h.get_first(state[c.AGENT], lambda x: agent_name in x.name)
|
||||
assert agent
|
||||
position_list = position_list.copy()
|
||||
if isinstance(coords_or_quantity, int):
|
||||
position_list = state.entities.floorlist
|
||||
pos_left_counter = coords_or_quantity
|
||||
else:
|
||||
position_list = coords_or_quantity.copy()
|
||||
pos_left_counter = 1 # Find a better way to resolve this.
|
||||
shuffle(position_list)
|
||||
while True:
|
||||
while pos_left_counter:
|
||||
try:
|
||||
pos = position_list.pop()
|
||||
except IndexError:
|
||||
print(f"Could not spawn Destinations at: {self.per_agent_positions[agent_name]}")
|
||||
print(f'Check your agent placement: {state[c.AGENT]} ... Exit ...')
|
||||
exit(9999)
|
||||
exit(-9999)
|
||||
if (not pos == agent.pos) and (not state[d.DESTINATION].by_pos(pos)):
|
||||
destination = Destination(pos, bind_to=agent)
|
||||
pos_left_counter -= 1
|
||||
break
|
||||
else:
|
||||
continue
|
||||
|
@ -1,6 +1,5 @@
|
||||
from typing import List
|
||||
|
||||
import marl_factory_grid.modules.maintenance.constants
|
||||
from marl_factory_grid.environment.rules import Rule
|
||||
from marl_factory_grid.utils.results import TickResult, DoneResult
|
||||
from marl_factory_grid.environment import constants as c
|
||||
@ -31,5 +30,5 @@ class DoneAtMaintainerCollision(Rule):
|
||||
for agent in agents:
|
||||
if agent.pos in m_pos:
|
||||
done_results.append(DoneResult(entity=agent, validity=c.VALID, identifier=self.name,
|
||||
reward=marl_factory_grid.modules.maintenance.constants.MAINTAINER_COLLISION_REWARD))
|
||||
reward=M.MAINTAINER_COLLISION_REWARD))
|
||||
return done_results
|
||||
|
@ -43,9 +43,6 @@ class AgentSingleZonePlacement(Rule):
|
||||
agent.move(state[z.ZONES][z_idxs.pop()].random_pos, state)
|
||||
return []
|
||||
|
||||
def tick_step(self, state):
|
||||
return []
|
||||
|
||||
|
||||
class IndividualDestinationZonePlacement(Rule):
|
||||
|
||||
|
@ -1,4 +1,5 @@
|
||||
import ast
|
||||
from collections import defaultdict
|
||||
|
||||
from os import PathLike
|
||||
from pathlib import Path
|
||||
@ -24,13 +25,21 @@ class FactoryConfigParser(object):
|
||||
self.config_path = Path(config_path)
|
||||
self.custom_modules_path = Path(custom_modules_path) if custom_modules_path is not None else custom_modules_path
|
||||
self.config = yaml.safe_load(self.config_path.open())
|
||||
self._n_abbr_dict = None
|
||||
|
||||
def __getattr__(self, item):
|
||||
return self['General'][item]
|
||||
|
||||
def _get_sub_list(self, primary_key: str, sub_key: str):
|
||||
return [{key: [s for k, v in val.items() if k == sub_key for s in v] for key, val in x.items()
|
||||
} for x in self.config[primary_key]]
|
||||
} for x in self.config.get(primary_key, [])]
|
||||
|
||||
def _n_abbr(self, n):
|
||||
assert isinstance(n, int)
|
||||
if self._n_abbr_dict is None:
|
||||
self._n_abbr_dict = defaultdict(lambda: 'th', {1: 'st', 2: 'nd', 3: 'rd'})
|
||||
return self._n_abbr_dict[n]
|
||||
|
||||
|
||||
@property
|
||||
def agent_actions(self):
|
||||
@ -145,11 +154,18 @@ class FactoryConfigParser(object):
|
||||
observations.extend(x for x in self.agents[name]['Observations'] if x != c.DEFAULTS)
|
||||
positions = [ast.literal_eval(x) for x in self.agents[name].get('Positions', [])]
|
||||
other_kwargs = {k: v for k, v in self.agents[name].items() if k not in
|
||||
['Actions', 'Observations', 'Positions']}
|
||||
['Actions', 'Observations', 'Positions', 'Clones']}
|
||||
parsed_agents_conf[name] = dict(
|
||||
actions=parsed_actions, observations=observations, positions=positions, other=other_kwargs
|
||||
)
|
||||
|
||||
clones = self.agents[name].get('Clones', 0)
|
||||
if clones:
|
||||
if isinstance(clones, int):
|
||||
clones = [f'{name}_the_{n}{self._n_abbr(n)}' for n in range(clones)]
|
||||
for clone in clones:
|
||||
parsed_agents_conf[clone] = parsed_agents_conf[name].copy()
|
||||
|
||||
return parsed_agents_conf
|
||||
|
||||
def load_env_rules(self) -> List[Rule]:
|
||||
|
@ -58,3 +58,6 @@ class EnvMonitor(Wrapper):
|
||||
pickle.dump(self._monitor_df.reset_index(), f, protocol=pickle.HIGHEST_PROTOCOL)
|
||||
if auto_plotting_keys:
|
||||
plot_single_run(filepath, column_keys=auto_plotting_keys)
|
||||
|
||||
def report_possible_colum_keys(self):
|
||||
print(self._monitor_df.columns)
|
@ -24,11 +24,7 @@ class OBSBuilder(object):
|
||||
return 0
|
||||
|
||||
def __init__(self, level_shape: np.size, state: Gamestate, pomdp_r: int):
|
||||
self._curr_env_step = None
|
||||
self.all_obs = dict()
|
||||
self.light_blockers = defaultdict(lambda: False)
|
||||
self.positional = defaultdict(lambda: False)
|
||||
self.non_positional = defaultdict(lambda: False)
|
||||
self.ray_caster = dict()
|
||||
|
||||
self.level_shape = level_shape
|
||||
@ -37,13 +33,15 @@ class OBSBuilder(object):
|
||||
self.size = np.prod(self.obs_shape)
|
||||
|
||||
self.obs_layers = dict()
|
||||
|
||||
self.reset_struc_obs_block(state)
|
||||
self.curr_lightmaps = dict()
|
||||
|
||||
self._floortiles = defaultdict(list, {pos: [Floor(*pos)] for pos in state.entities.floorlist})
|
||||
|
||||
def reset_struc_obs_block(self, state):
|
||||
self._curr_env_step = state.curr_step
|
||||
self.reset(state)
|
||||
|
||||
def reset(self, state):
|
||||
# Reset temporary information
|
||||
self.curr_lightmaps = dict()
|
||||
# Construct an empty obs (array) for possible placeholders
|
||||
self.all_obs[c.PLACEHOLDER] = np.full(self.obs_shape, 0, dtype=float)
|
||||
# Fill the all_obs-dict with all available entities
|
||||
@ -52,7 +50,8 @@ class OBSBuilder(object):
|
||||
|
||||
def observation_space(self, state):
|
||||
from gymnasium.spaces import Tuple, Box
|
||||
obsn = self.refresh_and_build_for_all(state)
|
||||
self.reset(state)
|
||||
obsn = self.build_for_all(state)
|
||||
if len(state[c.AGENT]) == 1:
|
||||
space = Box(low=0, high=1, shape=next(x for x in obsn.values()).shape, dtype=np.float32)
|
||||
else:
|
||||
@ -60,14 +59,13 @@ class OBSBuilder(object):
|
||||
return space
|
||||
|
||||
def named_observation_space(self, state):
|
||||
return self.refresh_and_build_for_all(state)
|
||||
self.reset(state)
|
||||
return self.build_for_all(state)
|
||||
|
||||
def refresh_and_build_for_all(self, state) -> (dict, dict):
|
||||
self.reset_struc_obs_block(state)
|
||||
def build_for_all(self, state) -> (dict, dict):
|
||||
return {agent.name: self.build_for_agent(agent, state)[0] for agent in state[c.AGENT]}
|
||||
|
||||
def refresh_and_build_named_for_all(self, state) -> Dict[str, Dict[str, np.ndarray]]:
|
||||
self.reset_struc_obs_block(state)
|
||||
def build_named_for_all(self, state) -> Dict[str, Dict[str, np.ndarray]]:
|
||||
named_obs_dict = {}
|
||||
for agent in state[c.AGENT]:
|
||||
obs, names = self.build_for_agent(agent, state)
|
||||
@ -85,9 +83,6 @@ class OBSBuilder(object):
|
||||
pass
|
||||
|
||||
def build_for_agent(self, agent, state) -> (List[str], np.ndarray):
|
||||
assert self._curr_env_step == state.curr_step, (
|
||||
"The observation objekt has not been reset this state! Call 'reset_struc_obs_block(state)'"
|
||||
)
|
||||
try:
|
||||
agent_want_obs = self.obs_layers[agent.name]
|
||||
except KeyError:
|
||||
@ -166,7 +161,8 @@ class OBSBuilder(object):
|
||||
raise ValueError(f'Max(obs.size) for {e.name}: {obs[idx].size}, but was: {len(v)}.')
|
||||
if self.pomdp_r:
|
||||
try:
|
||||
light_map = np.zeros(self.obs_shape)
|
||||
light_map = self.curr_lightmaps.get(agent.name, np.zeros(self.obs_shape))
|
||||
light_map[:] = 0.0
|
||||
visible_floor = self.ray_caster[agent.name].visible_entities(self._floortiles, reset_cache=False)
|
||||
|
||||
for f in set(visible_floor):
|
||||
|
@ -49,7 +49,7 @@ def prepare_plt(df, hue, style, hue_order):
|
||||
plt.close('all')
|
||||
sns.set(rc={'text.usetex': False}, style='whitegrid')
|
||||
lineplot = sns.lineplot(data=df, x='Episode', y='Score', hue=hue, style=style,
|
||||
ci=95, palette=PALETTE, hue_order=hue_order, )
|
||||
errorbar=('ci', 95), palette=PALETTE, hue_order=hue_order, )
|
||||
plt.legend(bbox_to_anchor=(1.02, 1), loc='upper left', borderaxespad=0)
|
||||
plt.tight_layout()
|
||||
# lineplot.set_title(f'{sorted(list(df["Measurement"].unique()))}')
|
||||
|
@ -8,7 +8,7 @@ import numpy as np
|
||||
from marl_factory_grid.algorithms.static.utils import points_to_graph
|
||||
from marl_factory_grid.environment import constants as c
|
||||
from marl_factory_grid.environment.entity.entity import Entity
|
||||
from marl_factory_grid.environment.rules import Rule
|
||||
from marl_factory_grid.environment.rules import Rule, SpawnAgents
|
||||
from marl_factory_grid.utils.results import Result, DoneResult
|
||||
from marl_factory_grid.environment.tests import Test
|
||||
from marl_factory_grid.utils.results import Result
|
||||
@ -32,18 +32,19 @@ class StepRules:
|
||||
self.rules.append(item)
|
||||
return True
|
||||
|
||||
def do_all_reset(self, state):
|
||||
for rule in self.rules:
|
||||
if rule_reset_printline := rule.on_reset(state):
|
||||
state.print(rule_reset_printline)
|
||||
return c.VALID
|
||||
|
||||
def do_all_init(self, state, lvl_map):
|
||||
for rule in self.rules:
|
||||
if rule_init_printline := rule.on_init(state, lvl_map):
|
||||
state.print(rule_init_printline)
|
||||
return c.VALID
|
||||
|
||||
def do_all_reset(self, state):
|
||||
SpawnAgents().on_reset(state)
|
||||
for rule in self.rules:
|
||||
if rule_reset_printline := rule.on_reset(state):
|
||||
state.print(rule_reset_printline)
|
||||
return c.VALID
|
||||
|
||||
def tick_step_all(self, state):
|
||||
results = list()
|
||||
for rule in self.rules:
|
||||
@ -91,6 +92,10 @@ class Gamestate(object):
|
||||
self._floortile_graph = None
|
||||
self.tests = StepTests(*tests)
|
||||
|
||||
def reset(self):
|
||||
self.curr_step = 0
|
||||
self.curr_actions = None
|
||||
|
||||
def __getitem__(self, item):
|
||||
return self.entities[item]
|
||||
|
||||
@ -201,7 +206,7 @@ class Gamestate(object):
|
||||
results.extend(on_check_done_result)
|
||||
return results
|
||||
|
||||
def get_all_pos_with_collisions(self) -> List[Tuple[(int, int)]]:
|
||||
def get_collision_positions(self) -> List[Tuple[(int, int)]]:
|
||||
"""
|
||||
Returns a list positions [(x, y), ... ] on which collisions occur. This does not include agents,
|
||||
that were unable to move because their target direction was blocked, also a form of collision.
|
||||
|
@ -12,7 +12,7 @@ from marl_factory_grid.utils.tools import ConfigExplainer
|
||||
|
||||
if __name__ == '__main__':
|
||||
# Render at each step?
|
||||
render = False
|
||||
render = True
|
||||
# Reveal all possible Modules (Entities, Rules, Agents[Actions, Observations], etc.)
|
||||
explain_config = False
|
||||
# Collect statistics?
|
||||
@ -29,7 +29,7 @@ if __name__ == '__main__':
|
||||
ce.save_all(run_path / 'all_out.yaml')
|
||||
|
||||
# Path to config File
|
||||
path = Path('marl_factory_grid/configs/narrow_corridor.yaml')
|
||||
path = Path('marl_factory_grid/configs/eight_puzzle.yaml')
|
||||
|
||||
# Env Init
|
||||
factory = Factory(path)
|
||||
@ -61,6 +61,10 @@ if __name__ == '__main__':
|
||||
if record:
|
||||
factory.save_records(run_path / 'test.pb')
|
||||
if plotting:
|
||||
plot_single_run(run_path)
|
||||
factory.report_possible_colum_keys()
|
||||
plot_single_run(run_path, column_keys=['Global_DoneAtDestinationReachAll', 'step_reward',
|
||||
'Agent[Karl-Heinz]_DoneAtDestinationReachAll',
|
||||
'Agent[Wolfgang]_DoneAtDestinationReachAll',
|
||||
'Global_DoneAtDestinationReachAll'])
|
||||
|
||||
print('Done!!! Goodbye....')
|
||||
|
2
setup.py
2
setup.py
@ -5,7 +5,7 @@ long_description = (this_directory / "README.md").read_text()
|
||||
|
||||
|
||||
setup(name='Marl-Factory-Grid',
|
||||
version='0.1.2',
|
||||
version='0.2.0',
|
||||
description='A framework to research MARL agents in various setings.',
|
||||
author='Steffen Illium',
|
||||
author_email='steffen.illium@ifi.lmu.de',
|
||||
|
Loading…
x
Reference in New Issue
Block a user