added mlpmaker

This commit is contained in:
romue 2021-06-22 17:28:22 +02:00
parent b5d729e597
commit f0bb507121

View File

@ -47,19 +47,22 @@ def soft_update(local_model, target_model, tau):
target_param.data.copy_(tau*local_param.data + (1.-tau)*target_param.data)
def mlp_maker(dims):
layers = [('Flatten', nn.Flatten())]
def mlp_maker(dims, flatten=False, activation='elu', activation_last='identity'):
activations = {'elu': nn.ELU, 'relu': nn.ReLU,
'leaky_relu': nn.LeakyReLU, 'tanh': nn.Tanh,
'gelu': nn.GELU, 'identity': nn.Identity}
layers = [('Flatten', nn.Flatten())] if flatten else []
for i in range(1, len(dims)):
layers.append((f'Linear#{i - 1}', nn.Linear(dims[i - 1], dims[i])))
if i != len(dims) - 1:
layers.append(('ELU', nn.ELU()))
layers.append((f'Layer #{i - 1}: Linear', nn.Linear(dims[i - 1], dims[i])))
activation_str = activation if i != len(dims)-1 else activation_last
layers.append((f'Layer #{i - 1}: {activation_str.capitalize()}', activations[activation_str]()))
return nn.Sequential(OrderedDict(layers))
class BaseDQN(nn.Module):
def __init__(self, dims=[3*5*5, 64, 64, 9]):
super(BaseDQN, self).__init__()
self.net = mlp_maker(dims)
self.net = mlp_maker(dims, flatten=True)
def act(self, x) -> np.ndarray:
with torch.no_grad():
@ -76,6 +79,7 @@ class BaseDDQN(BaseDQN):
value_dims=[64,1],
advantage_dims=[64,9]):
super(BaseDDQN, self).__init__(backbone_dims)
self.net = mlp_maker(backbone_dims, flatten=True)
self.value_head = mlp_maker(value_dims)
self.advantage_head = mlp_maker(advantage_dims)
@ -86,13 +90,11 @@ class BaseDDQN(BaseDQN):
return values + (advantages - advantages.mean())
class BaseQlearner:
def __init__(self, q_net, target_q_net, env, buffer_size, target_update, eps_end, n_agents=1,
gamma=0.99, train_every_n_steps=4, n_grad_steps=1, tau=1.0, max_grad_norm=10,
exploration_fraction=0.2, batch_size=64, lr=1e-4, reg_weight=0.0):
self.q_net = q_net
print(self.q_net)
self.target_q_net = target_q_net
self.target_q_net.eval()
soft_update(self.q_net, self.target_q_net, tau=1.0)
@ -205,14 +207,13 @@ class BaseQlearner:
pred_q += q_values
target_q_raw += next_q_values_raw
target_q = experience.reward + (1 - experience.done) * self.gamma * target_q_raw
#print(pred_q[0], target_q_raw[0], target_q[0], experience.reward[0])
loss = torch.mean(self.reg_weight * pred_q + torch.pow(pred_q - target_q, 2))
self._backprop_loss(loss)
class MDQN(BaseQlearner):
class MunchhausenQLearner(BaseQlearner):
def __init__(self, *args, temperature=0.03, alpha=0.9, clip_l0=-1.0, **kwargs):
super(MDQN, self).__init__(*args, **kwargs)
super(MunchhausenQLearner, self).__init__(*args, **kwargs)
assert self.n_agents == 1, 'M-DQN currently only supports single agent training'
self.temperature = temperature
self.alpha = alpha
@ -260,7 +261,6 @@ class MDQN(BaseQlearner):
if __name__ == '__main__':
from environments.factory.simple_factory import SimpleFactory, DirtProperties, MovementProperties
from gym.wrappers import FrameStack
N_AGENTS = 1
@ -272,6 +272,6 @@ if __name__ == '__main__':
env = SimpleFactory(dirt_properties=dirt_props, movement_properties=move_props, n_agents=N_AGENTS, pomdp_radius=2, max_steps=400, omit_agent_slice_in_obs=False, combin_agent_slices_in_obs=True)
dqn, target_dqn = BaseDDQN(), BaseDDQN()
learner = MDQN(dqn, target_dqn, env, 40000, target_update=3500, lr=0.0007, gamma=0.99, n_agents=N_AGENTS, tau=0.95, max_grad_norm=10,
train_every_n_steps=4, eps_end=0.025, n_grad_steps=1, reg_weight=0.1, exploration_fraction=0.25, batch_size=64)
learner = MunchhausenQLearner(dqn, target_dqn, env, 40000, target_update=3500, lr=0.0007, gamma=0.99, n_agents=N_AGENTS, tau=0.95, max_grad_norm=10,
train_every_n_steps=4, eps_end=0.025, n_grad_steps=1, reg_weight=0.1, exploration_fraction=0.25, batch_size=64)
learner.learn(100000)