mirror of
				https://github.com/illiumst/marl-factory-grid.git
				synced 2025-10-31 12:37:27 +01:00 
			
		
		
		
	add CER sampling and Munchhausen DQN
This commit is contained in:
		| @@ -1,4 +1,4 @@ | ||||
| from typing import NamedTuple, Union | ||||
| from typing import NamedTuple, Union, Iterable | ||||
| from collections import namedtuple, deque | ||||
| import numpy as np | ||||
| import random | ||||
| @@ -30,8 +30,9 @@ class BaseBuffer: | ||||
|     def add(self, experience): | ||||
|         self.experience.append(experience) | ||||
|  | ||||
|     def sample(self, k): | ||||
|         sample = random.choices(self.experience, k=k) | ||||
|     def sample(self, k, cer=4): | ||||
|         sample = random.choices(self.experience, k=k-cer) | ||||
|         for i in range(cer): sample += [self.experience[-i]] | ||||
|         observations = torch.stack([torch.from_numpy(e.observation) for e in sample], 0).float() | ||||
|         next_observations = torch.stack([torch.from_numpy(e.next_observation) for e in sample], 0).float() | ||||
|         actions = torch.tensor([e.action for e in sample]).long() | ||||
| @@ -40,18 +41,6 @@ class BaseBuffer: | ||||
|         return Experience(observations, next_observations, actions, rewards, dones) | ||||
|  | ||||
|  | ||||
| class PERBuffer(BaseBuffer): | ||||
|     def __init__(self, size, alpha=0.2): | ||||
|         super(PERBuffer, self).__init__(size) | ||||
|         self.alpha = alpha | ||||
|  | ||||
|     def sample(self, k): | ||||
|         pr = [abs(e.priority)**self.alpha for e in self.experience] | ||||
|         pr = np.array(pr) / sum(pr) | ||||
|         idxs = random.choices(range(len(self)), weights=pr, k=k) | ||||
|         pass | ||||
|  | ||||
|  | ||||
| class BaseDQN(nn.Module): | ||||
|     def __init__(self): | ||||
|         super(BaseDQN, self).__init__() | ||||
| @@ -80,14 +69,21 @@ class BaseDQN(nn.Module): | ||||
|         return random.randrange(0, 5) | ||||
|  | ||||
|  | ||||
| def soft_update(local_model, target_model, tau): | ||||
|     # taken from https://github.com/BY571/Munchausen-RL/blob/master/M-DQN.ipynb | ||||
|     for target_param, local_param in zip(target_model.parameters(), local_model.parameters()): | ||||
|         target_param.data.copy_(tau*local_param.data + (1.-tau)*target_param.data) | ||||
|  | ||||
|  | ||||
| class BaseQlearner: | ||||
|     def __init__(self, q_net, target_q_net, env, buffer, target_update, eps_end, n_agents=1, | ||||
|                  gamma=0.99, train_every_n_steps=4, n_grad_steps=1, | ||||
|                  gamma=0.99, train_every_n_steps=4, n_grad_steps=1, tau=1.0, max_grad_norm=10, | ||||
|                  exploration_fraction=0.2, batch_size=64, lr=1e-4, reg_weight=0.0): | ||||
|         self.q_net = q_net | ||||
|         self.target_q_net = target_q_net | ||||
|         self.q_net.apply(self.weights_init) | ||||
|         #self.q_net.apply(self.weights_init) | ||||
|         self.target_q_net.eval() | ||||
|         soft_update(self.q_net, self.target_q_net, tau=1.0) | ||||
|         self.env = env | ||||
|         self.buffer = buffer | ||||
|         self.target_update = target_update | ||||
| @@ -99,10 +95,12 @@ class BaseQlearner: | ||||
|         self.train_every_n_steps = train_every_n_steps | ||||
|         self.n_grad_steps = n_grad_steps | ||||
|         self.lr = lr | ||||
|         self.tau = tau | ||||
|         self.reg_weight = reg_weight | ||||
|         self.n_agents = n_agents | ||||
|         self.device = 'cpu' | ||||
|         self.optimizer = torch.optim.AdamW(self.q_net.parameters(), lr=self.lr) | ||||
|         self.max_grad_norm = max_grad_norm | ||||
|         self.running_reward = deque(maxlen=5) | ||||
|         self.running_loss = deque(maxlen=5) | ||||
|         self._n_updates = 0 | ||||
| @@ -112,7 +110,7 @@ class BaseQlearner: | ||||
|         return self | ||||
|  | ||||
|     @staticmethod | ||||
|     def weights_init(module, activation='relu'): | ||||
|     def weights_init(module, activation='leaky_relu'): | ||||
|         if isinstance(module, (nn.Linear, nn.Conv2d)): | ||||
|             nn.init.xavier_normal_(module.weight, gain=torch.nn.init.calculate_gain(activation)) | ||||
|             if module.bias is not None: | ||||
| @@ -154,35 +152,38 @@ class BaseQlearner: | ||||
|                     self._n_updates += 1 | ||||
|                 if step % self.target_update == 0: | ||||
|                     print('UPDATE') | ||||
|                     polyak_update(self.q_net.parameters(), self.target_q_net.parameters(), 1) | ||||
|  | ||||
|                     soft_update(self.q_net, self.target_q_net, tau=self.tau) | ||||
|  | ||||
|             self.running_reward.append(total_reward) | ||||
|             if step % 10 == 0: | ||||
|                 print(f'Step: {step} ({(step/n_steps)*100:.2f}%)\tRunning reward: {sum(list(self.running_reward))/len(self.running_reward):.2f}\t' | ||||
|                       f' eps: {self.eps:.4f}\tRunning loss: {sum(list(self.running_loss))/len(self.running_loss):.4f}\tUpdates:{self._n_updates}') | ||||
|  | ||||
|     def _training_routine(self, obs, next_obs, action): | ||||
|     def _training_routine(self, obs, next_obs, action, reward): | ||||
|         current_q_values = self.q_net(obs) | ||||
|         current_q_values = torch.gather(current_q_values, dim=-1, index=action) | ||||
|         next_q_values_raw = self.target_q_net(next_obs).max(dim=-1)[0].reshape(-1, 1).detach() | ||||
|         return current_q_values, next_q_values_raw | ||||
|  | ||||
|  | ||||
|     def train(self): | ||||
|         if len(self.buffer) < self.batch_size: return | ||||
|         for _ in range(self.n_grad_steps): | ||||
|  | ||||
|             experience = self.buffer.sample(self.batch_size) | ||||
|             #print(experience.observation.shape, experience.next_observation.shape, experience.action.shape, experience.reward.shape, experience.done.shape) | ||||
|             experience = self.buffer.sample(self.batch_size, cer=self.train_every_n_steps) | ||||
|  | ||||
|             if self.n_agents <= 1: | ||||
|                 pred_q, target_q_raw = self._training_routine(experience.observation, experience.next_observation, experience.action) | ||||
|                 pred_q, target_q_raw = self._training_routine(experience.observation, | ||||
|                                                                       experience.next_observation, | ||||
|                                                                       experience.action, | ||||
|                                                                       experience.reward) | ||||
|             else: | ||||
|                 pred_q, target_q_raw = torch.zeros((self.batch_size, 1)), torch.zeros((self.batch_size, 1)) | ||||
|                 pred_q, target_q_raw, reward = [torch.zeros((self.batch_size, 1))]*3 | ||||
|                 for agent_i in range(self.n_agents): | ||||
|                     q_values, next_q_values_raw = self._training_routine(experience.observation[:, agent_i], | ||||
|                                                                          experience.next_observation[:, agent_i], | ||||
|                                                                          experience.action[:, agent_i].unsqueeze(-1) | ||||
|                                                                          ) | ||||
|                                                                                    experience.next_observation[:, agent_i], | ||||
|                                                                                    experience.action[:, agent_i].unsqueeze(-1), | ||||
|                                                                                    experience.reward) | ||||
|                     pred_q += q_values | ||||
|                     target_q_raw += next_q_values_raw | ||||
|             target_q = experience.reward  + (1 - experience.done) * self.gamma * target_q_raw | ||||
| @@ -193,7 +194,56 @@ class BaseQlearner: | ||||
|             # Optimize the model | ||||
|             self.optimizer.zero_grad() | ||||
|             loss.backward() | ||||
|             torch.nn.utils.clip_grad_norm_(self.q_net.parameters(), 10) | ||||
|             torch.nn.utils.clip_grad_norm_(self.q_net.parameters(), self.max_grad_norm) | ||||
|             self.optimizer.step() | ||||
|  | ||||
|  | ||||
| class MDQN(BaseQlearner): | ||||
|     def __init__(self, *args, temperature=0.03, alpha=0.9, clip_l0=-1.0, **kwargs): | ||||
|         super(MDQN, self).__init__(*args, **kwargs) | ||||
|         assert self.n_agents == 1, 'M-DQN currently only supports single agent training' | ||||
|         self.temperature = temperature | ||||
|         self.alpha = alpha | ||||
|         self.clip0 = clip_l0 | ||||
|  | ||||
|     def train(self): | ||||
|         if len(self.buffer) < self.batch_size: return | ||||
|         for _ in range(self.n_grad_steps): | ||||
|  | ||||
|             experience = self.buffer.sample(self.batch_size, cer=self.train_every_n_steps) | ||||
|  | ||||
|             q_target_next = self.target_q_net(experience.next_observation).detach() | ||||
|             advantages_next = (q_target_next - q_target_next.max(-1)[0].unsqueeze(-1)) | ||||
|             logsum = torch.logsumexp(advantages_next / self.temperature, -1).unsqueeze(-1) | ||||
|             tau_log_pi_next = advantages_next - self.temperature * logsum | ||||
|  | ||||
|             pi_target = F.softmax(q_target_next / self.temperature, dim=-1) | ||||
|             q_target = (self.gamma * (pi_target * (q_target_next - tau_log_pi_next) * (1 - experience.done)).sum(-1)).unsqueeze(-1) | ||||
|  | ||||
|             q_k_targets = self.target_q_net(experience.observation).detach() | ||||
|             v_k_target = q_k_targets.max(-1)[0].unsqueeze(-1) | ||||
|             logsum = torch.logsumexp((q_k_targets - v_k_target) / self.temperature, -1).unsqueeze(-1) | ||||
|             log_pi = q_k_targets - v_k_target - self.temperature * logsum | ||||
|             munchausen_addon = log_pi.gather(-1, experience.action) | ||||
|  | ||||
|             munchausen_reward = (experience.reward + self.alpha * torch.clamp(munchausen_addon, min=self.clip0, max=0)) | ||||
|  | ||||
|             # Compute Q targets for current states | ||||
|             m_q_target = munchausen_reward + q_target | ||||
|  | ||||
|             # Get expected Q values from local model | ||||
|             q_k = self.q_net(experience.observation) | ||||
|             pred_q = q_k.gather(-1, experience.action) | ||||
|  | ||||
|             # Compute loss | ||||
|             loss = torch.mean(self.reg_weight * pred_q + torch.pow(pred_q - m_q_target, 2)) | ||||
|  | ||||
|             # log loss | ||||
|             self.running_loss.append(loss.item()) | ||||
|             # Optimize the model | ||||
|             self.optimizer.zero_grad() | ||||
|             loss.backward() | ||||
|             torch.nn.utils.clip_grad_norm_(self.q_net.parameters(), self.max_grad_norm) | ||||
|             self.optimizer.step() | ||||
|  | ||||
|  | ||||
| @@ -221,6 +271,6 @@ if __name__ == '__main__': | ||||
|  | ||||
|  | ||||
|     dqn, target_dqn = BaseDQN(), BaseDQN() | ||||
|     learner = BaseQlearner(dqn, target_dqn, env, BaseBuffer(40000), target_update=3500, lr=0.0008, gamma=0.99, n_agents=N_AGENTS, | ||||
|                            train_every_n_steps=4, eps_end=0.05, n_grad_steps=1, reg_weight=0.05, exploration_fraction=0.25, batch_size=64) | ||||
|     learner = MDQN(dqn, target_dqn, env, BaseBuffer(40000), target_update=3500, lr=0.0008, gamma=0.99, n_agents=N_AGENTS, tau=0.95, max_grad_norm=10, | ||||
|                            train_every_n_steps=4, eps_end=0.025, n_grad_steps=1, reg_weight=0.1, exploration_fraction=0.25, batch_size=64) | ||||
|     learner.learn(100000) | ||||
|   | ||||
		Reference in New Issue
	
	Block a user
	 romue
					romue