mirror of
				https://github.com/illiumst/marl-factory-grid.git
				synced 2025-10-31 12:37:27 +01:00 
			
		
		
		
	add VDN fix
This commit is contained in:
		| @@ -39,9 +39,9 @@ class BaseBuffer: | ||||
|         return Experience(observations, next_observations, actions, rewards, dones) | ||||
|  | ||||
|  | ||||
| class BaseDQN(nn.Module): | ||||
| class BaseDDQN(nn.Module): | ||||
|     def __init__(self): | ||||
|         super(BaseDQN, self).__init__() | ||||
|         super(BaseDDQN, self).__init__() | ||||
|         self.net = nn.Sequential( | ||||
|             nn.Flatten(), | ||||
|             nn.Linear(3*5*5, 64), | ||||
| @@ -64,6 +64,27 @@ class BaseDQN(nn.Module): | ||||
|         return values + (advantages - advantages.mean()) | ||||
|  | ||||
|  | ||||
| class BaseDQN(nn.Module): | ||||
|     def __init__(self): | ||||
|         super(BaseDQN, self).__init__() | ||||
|         self.net = nn.Sequential( | ||||
|             nn.Flatten(), | ||||
|             nn.Linear(3*5*5, 64), | ||||
|             nn.ELU(), | ||||
|             nn.Linear(64,  64), | ||||
|             nn.ELU(), | ||||
|             nn.Linear(64, 9) | ||||
|         ) | ||||
|  | ||||
|     def act(self, x) -> np.ndarray: | ||||
|         with torch.no_grad(): | ||||
|             action = self.forward(x).max(-1)[1].numpy() | ||||
|         return action | ||||
|  | ||||
|     def forward(self, x): | ||||
|         return self.net(x) | ||||
|  | ||||
|  | ||||
| def soft_update(local_model, target_model, tau): | ||||
|     # taken from https://github.com/BY571/Munchausen-RL/blob/master/M-DQN.ipynb | ||||
|     for target_param, local_param in zip(target_model.parameters(), local_model.parameters()): | ||||
| @@ -154,10 +175,11 @@ class BaseQlearner: | ||||
|                 print(f'Step: {step} ({(step/n_steps)*100:.2f}%)\tRunning reward: {sum(list(self.running_reward))/len(self.running_reward):.2f}\t' | ||||
|                       f' eps: {self.eps:.4f}\tRunning loss: {sum(list(self.running_loss))/len(self.running_loss):.4f}\tUpdates:{self._n_updates}') | ||||
|  | ||||
|     def _training_routine(self, obs, next_obs, action, reward): | ||||
|     def _training_routine(self, obs, next_obs, action): | ||||
|         current_q_values = self.q_net(obs) | ||||
|         current_q_values = torch.gather(current_q_values, dim=-1, index=action) | ||||
|         next_q_values_raw = self.target_q_net(next_obs).max(dim=-1)[0].reshape(-1, 1).detach() | ||||
|         #print(current_q_values.shape, next_q_values_raw.shape) | ||||
|         return current_q_values, next_q_values_raw | ||||
|  | ||||
|     def _backprop_loss(self, loss): | ||||
| @@ -174,22 +196,21 @@ class BaseQlearner: | ||||
|         for _ in range(self.n_grad_steps): | ||||
|  | ||||
|             experience = self.buffer.sample(self.batch_size, cer=self.train_every_n_steps) | ||||
|  | ||||
|             if self.n_agents <= 1: | ||||
|                 pred_q, target_q_raw = self._training_routine(experience.observation, | ||||
|                                                                       experience.next_observation, | ||||
|                                                                       experience.action, | ||||
|                                                                       experience.reward) | ||||
|                                                               experience.next_observation, | ||||
|                                                               experience.action) | ||||
|  | ||||
|             else: | ||||
|                 pred_q, target_q_raw, reward = [torch.zeros((self.batch_size, 1))]*3 | ||||
|                 pred_q, target_q_raw = torch.zeros((self.batch_size, 1)), torch.zeros((self.batch_size, 1)) | ||||
|                 for agent_i in range(self.n_agents): | ||||
|                     q_values, next_q_values_raw = self._training_routine(experience.observation[:, agent_i], | ||||
|                                                                                    experience.next_observation[:, agent_i], | ||||
|                                                                                    experience.action[:, agent_i].unsqueeze(-1), | ||||
|                                                                                    experience.reward) | ||||
|                                                                          experience.next_observation[:, agent_i], | ||||
|                                                                          experience.action[:, agent_i].unsqueeze(-1)) | ||||
|                     pred_q += q_values | ||||
|                     target_q_raw += next_q_values_raw | ||||
|             target_q = experience.reward  + (1 - experience.done) * self.gamma * target_q_raw | ||||
|             #print(pred_q[0], target_q_raw[0], target_q[0], experience.reward[0]) | ||||
|             loss = torch.mean(self.reg_weight * pred_q + torch.pow(pred_q - target_q, 2)) | ||||
|             self._backprop_loss(loss) | ||||
|  | ||||
| @@ -245,7 +266,7 @@ class MDQN(BaseQlearner): | ||||
| if __name__ == '__main__': | ||||
|     from environments.factory.simple_factory import SimpleFactory, DirtProperties, MovementProperties | ||||
|  | ||||
|     N_AGENTS = 1 | ||||
|     N_AGENTS = 2 | ||||
|  | ||||
|     dirt_props = DirtProperties(clean_amount=3, gain_amount=0.2, max_global_amount=30, | ||||
|                                 max_local_amount=5, spawn_frequency=1, max_spawn_ratio=0.05) | ||||
| @@ -255,6 +276,6 @@ if __name__ == '__main__': | ||||
|     env = SimpleFactory(dirt_properties=dirt_props, movement_properties=move_props, n_agents=N_AGENTS, pomdp_radius=2,  max_steps=400, omit_agent_slice_in_obs=False, combin_agent_slices_in_obs=True) | ||||
|  | ||||
|     dqn, target_dqn = BaseDQN(), BaseDQN() | ||||
|     learner = MDQN(dqn, target_dqn, env, BaseBuffer(40000), target_update=3500, lr=0.0007, gamma=0.99, n_agents=N_AGENTS, tau=0.95, max_grad_norm=10, | ||||
|     learner = BaseQlearner(dqn, target_dqn, env, BaseBuffer(40000), target_update=3500, lr=0.0007, gamma=0.99, n_agents=N_AGENTS, tau=0.95, max_grad_norm=10, | ||||
|                    train_every_n_steps=4, eps_end=0.025, n_grad_steps=1, reg_weight=0.1, exploration_fraction=0.25, batch_size=64) | ||||
|     learner.learn(100000) | ||||
|   | ||||
		Reference in New Issue
	
	Block a user
	 romue
					romue