moved renderer.py to base, added initial salina experiments

This commit is contained in:
romue 2021-11-12 13:47:53 +01:00
parent f625b9d8a5
commit b6bda84033
7 changed files with 105 additions and 31 deletions

View File

@ -1,4 +1,4 @@
def make(env_str, n_agents=1, pomdp_r=2, max_steps=400):
def make(env_str, n_agents=1, pomdp_r=2, max_steps=400, stack_n_frames=3):
import yaml
from pathlib import Path
from environments.factory.combined_factories import DirtItemFactory
@ -9,7 +9,8 @@ def make(env_str, n_agents=1, pomdp_r=2, max_steps=400):
with (Path(__file__).parent / 'levels' / 'parameters' / f'{env_str}.yaml').open('r') as stream:
dictionary = yaml.load(stream, Loader=yaml.FullLoader)
obs_props = ObservationProperties(render_agents=AgentRenderOptions.COMBINED, frames_to_stack=0, pomdp_r=pomdp_r)
obs_props = ObservationProperties(render_agents=AgentRenderOptions.COMBINED,
frames_to_stack=stack_n_frames, pomdp_r=pomdp_r)
factory_kwargs = dict(n_agents=n_agents, max_steps=max_steps, obs_prop=obs_props,
mv_prop=MovementProperties(**dictionary['movement_props']),
@ -17,4 +18,4 @@ def make(env_str, n_agents=1, pomdp_r=2, max_steps=400):
record_episodes=False, verbose=False, **dictionary['factory_props']
)
return DirtFactory(**factory_kwargs)
return DirtFactory(**factory_kwargs).__enter__()

View File

@ -544,7 +544,7 @@ class BaseFactory(gym.Env):
def render(self, mode='human'):
if not self._renderer: # lazy init
from environments.factory.renderer import Renderer, RenderEntity
from environments.factory.base.renderer import Renderer, RenderEntity
global Renderer, RenderEntity
height, width = self._obs_cube.shape[1:]
self._renderer = Renderer(width, height, view_radius=self._pomdp_r, fps=5)
@ -562,7 +562,7 @@ class BaseFactory(gym.Env):
doors.append(RenderEntity(name, door.pos, 1, 'none', state, i + 1))
additional_assets = self.render_additional_assets()
self._renderer.render(walls + doors + additional_assets + agents)
return self._renderer.render(walls + doors + additional_assets + agents)
def save_params(self, filepath: Path):
# noinspection PyProtectedMember

View File

@ -7,6 +7,8 @@ import pygame
from typing import NamedTuple, Any
import time
import torch
class RenderEntity(NamedTuple):
name: str
@ -22,7 +24,7 @@ class Renderer:
BG_COLOR = (178, 190, 195) # (99, 110, 114)
WHITE = (223, 230, 233) # (200, 200, 200)
AGENT_VIEW_COLOR = (9, 132, 227)
ASSETS = Path(__file__).parent / 'assets'
ASSETS = Path(__file__).parent.parent / 'assets'
def __init__(self, grid_w=16, grid_h=16, cell_size=40, fps=7, grid_lines=True, view_radius=2):
self.grid_h = grid_h
@ -121,6 +123,8 @@ class Renderer:
pygame.display.flip()
self.clock.tick(self.fps)
rgb_obs = pygame.surfarray.array3d(self.screen)
return torch.from_numpy(rgb_obs).permute(2, 0, 1)
if __name__ == '__main__':

View File

@ -1,11 +1,11 @@
from typing import Union, NamedTuple, Dict
from typing import Union, NamedTuple
import numpy as np
from environments.factory.base.base_factory import BaseFactory
from environments.factory.base.objects import Agent, Action, Entity
from environments.factory.base.registers import EntityObjectRegister, ObjectRegister
from environments.factory.renderer import RenderEntity
from environments.factory.base.renderer import RenderEntity
from environments.helpers import Constants as c
from environments import helpers as h

View File

@ -1,6 +1,5 @@
import time
from enum import Enum
from pathlib import Path
from typing import List, Union, NamedTuple, Dict
import random
@ -12,8 +11,7 @@ from environments.factory.base.base_factory import BaseFactory
from environments.factory.base.objects import Agent, Action, Entity, Tile
from environments.factory.base.registers import Entities, MovingEntityObjectRegister
from environments.factory.renderer import RenderEntity
from environments.logging.recorder import RecorderCallback
from environments.factory.base.renderer import RenderEntity
from environments.utility_classes import ObservationProperties
CLEAN_UP_ACTION = h.EnvActions.CLEAN_UP

View File

@ -10,9 +10,9 @@ from environments.helpers import Constants as c
from environments import helpers as h
from environments.factory.base.objects import Agent, Entity, Action, Tile, MoveableEntity
from environments.factory.base.registers import Entities, EntityObjectRegister, ObjectRegister, \
MovingEntityObjectRegister, Register
MovingEntityObjectRegister
from environments.factory.renderer import RenderEntity
from environments.factory.base.renderer import RenderEntity
NO_ITEM = 0

View File

@ -1,29 +1,100 @@
from environments.factory import make
import salina
from salina import Workspace, TAgent
from salina.agents.gyma import AutoResetGymAgent, GymAgent
from salina.agents import Agents, TemporalAgent
from salina.rl.functional import _index
import torch
from gym.wrappers import FrameStack
import torch.nn as nn
from torch.nn.utils import spectral_norm
import torch.optim as optim
from torch.distributions import Categorical
class MyAgent(salina.TAgent):
def __init__(self):
super(MyAgent, self).__init__()
class A2CAgent(TAgent):
def __init__(self, observation_size, hidden_size, n_actions):
super().__init__()
self.model = nn.Sequential(
nn.Flatten(),
nn.Linear(observation_size, hidden_size),
nn.ELU(),
nn.Linear(hidden_size, hidden_size),
nn.ELU(),
nn.Linear(hidden_size, n_actions),
)
self.critic_model = nn.Sequential(
nn.Flatten(),
nn.Linear(observation_size, hidden_size),
nn.ELU(),
spectral_norm(nn.Linear(hidden_size, 1)),
)
def forward(self, t, **kwargs):
self.set(('timer', t), torch.tensor([t]))
def forward(self, t, stochastic, **kwargs):
observation = self.get(("env/env_obs", t))
scores = self.model(observation)
probs = torch.softmax(scores, dim=-1)
critic = self.critic_model(observation).squeeze(-1)
if stochastic:
action = torch.distributions.Categorical(probs).sample()
else:
action = probs.argmax(1)
self.set(("action", t), action)
self.set(("action_probs", t), probs)
self.set(("critic", t), critic)
if __name__ == '__main__':
n_agents = 1
env = make('DirtyFactory-v0', n_agents=n_agents)
env = FrameStack(env, num_stack=3)
env.reset()
agent = MyAgent()
workspace = salina.Workspace()
agent(workspace, t=0, n_steps=10)
# Setup agents and workspace
env_agent = AutoResetGymAgent(make, dict(env_str='DirtyFactory-v0'), n_envs=1)
a2c_agent = A2CAgent(3*4*5*5, 96, 10)
workspace = Workspace()
print(workspace)
eval_agent = Agents(GymAgent(make, dict(env_str='DirtyFactory-v0'), n_envs=1), a2c_agent)
for i in range(100):
eval_agent(workspace, t=i, save_render=True, stochastic=True)
assert False
# combine agents
acquisition_agent = TemporalAgent(Agents(env_agent, a2c_agent))
acquisition_agent.seed(0)
for i in range(1000):
state, *_ = env.step([env.unwrapped.action_space.sample() for _ in range(n_agents)])
#env.render()
# optimizers & other parameters
optimizer = optim.Adam(a2c_agent.parameters(), lr=1e-3)
n_timesteps = 10
# Decision making loop
for epoch in range(200000):
workspace.zero_grad()
if epoch > 0:
workspace.copy_n_last_steps(1)
acquisition_agent(workspace, t=1, n_steps=n_timesteps-1, stochastic=True)
else:
acquisition_agent(workspace, t=0, n_steps=n_timesteps, stochastic=True)
#for k in workspace.keys():
# print(f'{k} ==> {workspace[k].size()}')
critic, done, action_probs, reward, action = workspace[
"critic", "env/done", "action_probs", "env/reward", "action"
]
target = reward[1:] + 0.99 * critic[1:].detach() * (1 - done[1:].float())
td = target - critic[:-1]
td_error = td ** 2
critic_loss = td_error.mean()
entropy_loss = Categorical(action_probs).entropy().mean()
action_logp = _index(action_probs, action).log()
a2c_loss = action_logp[:-1] * td.detach()
a2c_loss = a2c_loss.mean()
loss = (
-0.001 * entropy_loss
+ 1.0 * critic_loss
- 0.1 * a2c_loss
)
optimizer.zero_grad()
loss.backward()
optimizer.step()
# Compute the cumulated reward on final_state
creward = workspace["env/cumulated_reward"]
creward = creward[done]
if creward.size()[0] > 0:
print(f"Cumulative reward at A2C step #{(1+epoch)*n_timesteps}: {creward.mean().item()}")