added mlpmaker

This commit is contained in:
romue 2021-06-22 16:23:39 +02:00
parent c5d677e9ba
commit b5d729e597

View File

@ -1,5 +1,5 @@
from typing import NamedTuple, Union
from collections import deque
from collections import deque, OrderedDict
import numpy as np
import random
import torch
@ -39,42 +39,27 @@ class BaseBuffer:
return Experience(observations, next_observations, actions, rewards, dones)
class BaseDDQN(nn.Module):
def __init__(self):
super(BaseDDQN, self).__init__()
self.net = nn.Sequential(
nn.Flatten(),
nn.Linear(3*5*5, 64),
nn.ELU(),
nn.Linear(64, 64),
nn.ELU()
)
self.value_head = nn.Linear(64, 1)
self.advantage_head = nn.Linear(64, 9)
def act(self, x) -> np.ndarray:
with torch.no_grad():
action = self.forward(x).max(-1)[1].numpy()
return action
def forward(self, x):
features = self.net(x)
advantages = self.advantage_head(features)
values = self.value_head(features)
return values + (advantages - advantages.mean())
def soft_update(local_model, target_model, tau):
# taken from https://github.com/BY571/Munchausen-RL/blob/master/M-DQN.ipynb
for target_param, local_param in zip(target_model.parameters(), local_model.parameters()):
target_param.data.copy_(tau*local_param.data + (1.-tau)*target_param.data)
def mlp_maker(dims):
layers = [('Flatten', nn.Flatten())]
for i in range(1, len(dims)):
layers.append((f'Linear#{i - 1}', nn.Linear(dims[i - 1], dims[i])))
if i != len(dims) - 1:
layers.append(('ELU', nn.ELU()))
return nn.Sequential(OrderedDict(layers))
class BaseDQN(nn.Module):
def __init__(self):
def __init__(self, dims=[3*5*5, 64, 64, 9]):
super(BaseDQN, self).__init__()
self.net = nn.Sequential(
nn.Flatten(),
nn.Linear(3*5*5, 64),
nn.ELU(),
nn.Linear(64, 64),
nn.ELU(),
nn.Linear(64, 9)
)
self.net = mlp_maker(dims)
def act(self, x) -> np.ndarray:
with torch.no_grad():
@ -85,23 +70,34 @@ class BaseDQN(nn.Module):
return self.net(x)
def soft_update(local_model, target_model, tau):
# taken from https://github.com/BY571/Munchausen-RL/blob/master/M-DQN.ipynb
for target_param, local_param in zip(target_model.parameters(), local_model.parameters()):
target_param.data.copy_(tau*local_param.data + (1.-tau)*target_param.data)
class BaseDDQN(BaseDQN):
def __init__(self,
backbone_dims=[3*5*5, 64, 64],
value_dims=[64,1],
advantage_dims=[64,9]):
super(BaseDDQN, self).__init__(backbone_dims)
self.value_head = mlp_maker(value_dims)
self.advantage_head = mlp_maker(advantage_dims)
def forward(self, x):
features = self.net(x)
advantages = self.advantage_head(features)
values = self.value_head(features)
return values + (advantages - advantages.mean())
class BaseQlearner:
def __init__(self, q_net, target_q_net, env, buffer, target_update, eps_end, n_agents=1,
def __init__(self, q_net, target_q_net, env, buffer_size, target_update, eps_end, n_agents=1,
gamma=0.99, train_every_n_steps=4, n_grad_steps=1, tau=1.0, max_grad_norm=10,
exploration_fraction=0.2, batch_size=64, lr=1e-4, reg_weight=0.0):
self.q_net = q_net
print(self.q_net)
self.target_q_net = target_q_net
#self.q_net.apply(self.weights_init)
self.target_q_net.eval()
soft_update(self.q_net, self.target_q_net, tau=1.0)
self.env = env
self.buffer = buffer
self.buffer = BaseBuffer(buffer_size)
self.target_update = target_update
self.eps = 1.
self.eps_end = eps_end
@ -128,7 +124,7 @@ class BaseQlearner:
@staticmethod
def weights_init(module, activation='leaky_relu'):
if isinstance(module, (nn.Linear, nn.Conv2d)):
nn.init.xavier_normal_(module.weight, gain=torch.nn.init.calculate_gain(activation))
nn.init.orthogonal_(module.weight, gain=torch.nn.init.calculate_gain(activation))
if module.bias is not None:
module.bias.data.fill_(0.0)
@ -179,7 +175,6 @@ class BaseQlearner:
current_q_values = self.q_net(obs)
current_q_values = torch.gather(current_q_values, dim=-1, index=action)
next_q_values_raw = self.target_q_net(next_obs).max(dim=-1)[0].reshape(-1, 1).detach()
#print(current_q_values.shape, next_q_values_raw.shape)
return current_q_values, next_q_values_raw
def _backprop_loss(self, loss):
@ -265,8 +260,9 @@ class MDQN(BaseQlearner):
if __name__ == '__main__':
from environments.factory.simple_factory import SimpleFactory, DirtProperties, MovementProperties
from gym.wrappers import FrameStack
N_AGENTS = 2
N_AGENTS = 1
dirt_props = DirtProperties(clean_amount=3, gain_amount=0.2, max_global_amount=30,
max_local_amount=5, spawn_frequency=1, max_spawn_ratio=0.05)
@ -275,7 +271,7 @@ if __name__ == '__main__':
allow_no_op=False)
env = SimpleFactory(dirt_properties=dirt_props, movement_properties=move_props, n_agents=N_AGENTS, pomdp_radius=2, max_steps=400, omit_agent_slice_in_obs=False, combin_agent_slices_in_obs=True)
dqn, target_dqn = BaseDQN(), BaseDQN()
learner = BaseQlearner(dqn, target_dqn, env, BaseBuffer(40000), target_update=3500, lr=0.0007, gamma=0.99, n_agents=N_AGENTS, tau=0.95, max_grad_norm=10,
dqn, target_dqn = BaseDDQN(), BaseDDQN()
learner = MDQN(dqn, target_dqn, env, 40000, target_update=3500, lr=0.0007, gamma=0.99, n_agents=N_AGENTS, tau=0.95, max_grad_norm=10,
train_every_n_steps=4, eps_end=0.025, n_grad_steps=1, reg_weight=0.1, exploration_fraction=0.25, batch_size=64)
learner.learn(100000)