mirror of
				https://github.com/illiumst/marl-factory-grid.git
				synced 2025-10-31 12:37:27 +01:00 
			
		
		
		
	added mlpmaker
This commit is contained in:
		| @@ -1,5 +1,5 @@ | ||||
| from typing import NamedTuple, Union | ||||
| from collections import deque | ||||
| from collections import deque, OrderedDict | ||||
| import numpy as np | ||||
| import random | ||||
| import torch | ||||
| @@ -39,42 +39,27 @@ class BaseBuffer: | ||||
|         return Experience(observations, next_observations, actions, rewards, dones) | ||||
| 
 | ||||
| 
 | ||||
| class BaseDDQN(nn.Module): | ||||
|     def __init__(self): | ||||
|         super(BaseDDQN, self).__init__() | ||||
|         self.net = nn.Sequential( | ||||
|             nn.Flatten(), | ||||
|             nn.Linear(3*5*5, 64), | ||||
|             nn.ELU(), | ||||
|             nn.Linear(64,  64), | ||||
|             nn.ELU() | ||||
|         ) | ||||
|         self.value_head         =  nn.Linear(64, 1) | ||||
|         self.advantage_head     =  nn.Linear(64, 9) | ||||
| 
 | ||||
|     def act(self, x) -> np.ndarray: | ||||
|         with torch.no_grad(): | ||||
|             action = self.forward(x).max(-1)[1].numpy() | ||||
|         return action | ||||
| 
 | ||||
|     def forward(self, x): | ||||
|         features = self.net(x) | ||||
|         advantages = self.advantage_head(features) | ||||
|         values = self.value_head(features) | ||||
|         return values + (advantages - advantages.mean()) | ||||
| def soft_update(local_model, target_model, tau): | ||||
|     # taken from https://github.com/BY571/Munchausen-RL/blob/master/M-DQN.ipynb | ||||
|     for target_param, local_param in zip(target_model.parameters(), local_model.parameters()): | ||||
|         target_param.data.copy_(tau*local_param.data + (1.-tau)*target_param.data) | ||||
| 
 | ||||
| 
 | ||||
| def mlp_maker(dims): | ||||
|     layers = [('Flatten', nn.Flatten())] | ||||
|     for i in range(1, len(dims)): | ||||
|         layers.append((f'Linear#{i - 1}', nn.Linear(dims[i - 1], dims[i]))) | ||||
|         if i != len(dims) - 1: | ||||
|             layers.append(('ELU', nn.ELU())) | ||||
|     return nn.Sequential(OrderedDict(layers)) | ||||
| 
 | ||||
| 
 | ||||
| class BaseDQN(nn.Module): | ||||
|     def __init__(self): | ||||
|     def __init__(self, dims=[3*5*5, 64, 64, 9]): | ||||
|         super(BaseDQN, self).__init__() | ||||
|         self.net = nn.Sequential( | ||||
|             nn.Flatten(), | ||||
|             nn.Linear(3*5*5, 64), | ||||
|             nn.ELU(), | ||||
|             nn.Linear(64,  64), | ||||
|             nn.ELU(), | ||||
|             nn.Linear(64, 9) | ||||
|         ) | ||||
|         self.net = mlp_maker(dims) | ||||
| 
 | ||||
|     def act(self, x) -> np.ndarray: | ||||
|         with torch.no_grad(): | ||||
| @@ -85,23 +70,34 @@ class BaseDQN(nn.Module): | ||||
|         return self.net(x) | ||||
| 
 | ||||
| 
 | ||||
| def soft_update(local_model, target_model, tau): | ||||
|     # taken from https://github.com/BY571/Munchausen-RL/blob/master/M-DQN.ipynb | ||||
|     for target_param, local_param in zip(target_model.parameters(), local_model.parameters()): | ||||
|         target_param.data.copy_(tau*local_param.data + (1.-tau)*target_param.data) | ||||
| class BaseDDQN(BaseDQN): | ||||
|     def __init__(self, | ||||
|                  backbone_dims=[3*5*5, 64, 64], | ||||
|                  value_dims=[64,1], | ||||
|                  advantage_dims=[64,9]): | ||||
|         super(BaseDDQN, self).__init__(backbone_dims) | ||||
|         self.value_head         =  mlp_maker(value_dims) | ||||
|         self.advantage_head     =  mlp_maker(advantage_dims) | ||||
| 
 | ||||
|     def forward(self, x): | ||||
|         features = self.net(x) | ||||
|         advantages = self.advantage_head(features) | ||||
|         values = self.value_head(features) | ||||
|         return values + (advantages - advantages.mean()) | ||||
| 
 | ||||
| 
 | ||||
| 
 | ||||
| class BaseQlearner: | ||||
|     def __init__(self, q_net, target_q_net, env, buffer, target_update, eps_end, n_agents=1, | ||||
|     def __init__(self, q_net, target_q_net, env, buffer_size, target_update, eps_end, n_agents=1, | ||||
|                  gamma=0.99, train_every_n_steps=4, n_grad_steps=1, tau=1.0, max_grad_norm=10, | ||||
|                  exploration_fraction=0.2, batch_size=64, lr=1e-4, reg_weight=0.0): | ||||
|         self.q_net = q_net | ||||
|         print(self.q_net) | ||||
|         self.target_q_net = target_q_net | ||||
|         #self.q_net.apply(self.weights_init) | ||||
|         self.target_q_net.eval() | ||||
|         soft_update(self.q_net, self.target_q_net, tau=1.0) | ||||
|         self.env = env | ||||
|         self.buffer = buffer | ||||
|         self.buffer = BaseBuffer(buffer_size) | ||||
|         self.target_update = target_update | ||||
|         self.eps = 1. | ||||
|         self.eps_end = eps_end | ||||
| @@ -128,7 +124,7 @@ class BaseQlearner: | ||||
|     @staticmethod | ||||
|     def weights_init(module, activation='leaky_relu'): | ||||
|         if isinstance(module, (nn.Linear, nn.Conv2d)): | ||||
|             nn.init.xavier_normal_(module.weight, gain=torch.nn.init.calculate_gain(activation)) | ||||
|             nn.init.orthogonal_(module.weight, gain=torch.nn.init.calculate_gain(activation)) | ||||
|             if module.bias is not None: | ||||
|                 module.bias.data.fill_(0.0) | ||||
| 
 | ||||
| @@ -179,7 +175,6 @@ class BaseQlearner: | ||||
|         current_q_values = self.q_net(obs) | ||||
|         current_q_values = torch.gather(current_q_values, dim=-1, index=action) | ||||
|         next_q_values_raw = self.target_q_net(next_obs).max(dim=-1)[0].reshape(-1, 1).detach() | ||||
|         #print(current_q_values.shape, next_q_values_raw.shape) | ||||
|         return current_q_values, next_q_values_raw | ||||
| 
 | ||||
|     def _backprop_loss(self, loss): | ||||
| @@ -265,8 +260,9 @@ class MDQN(BaseQlearner): | ||||
| 
 | ||||
| if __name__ == '__main__': | ||||
|     from environments.factory.simple_factory import SimpleFactory, DirtProperties, MovementProperties | ||||
|     from gym.wrappers import FrameStack | ||||
| 
 | ||||
|     N_AGENTS = 2 | ||||
|     N_AGENTS = 1 | ||||
| 
 | ||||
|     dirt_props = DirtProperties(clean_amount=3, gain_amount=0.2, max_global_amount=30, | ||||
|                                 max_local_amount=5, spawn_frequency=1, max_spawn_ratio=0.05) | ||||
| @@ -275,7 +271,7 @@ if __name__ == '__main__': | ||||
|                                     allow_no_op=False) | ||||
|     env = SimpleFactory(dirt_properties=dirt_props, movement_properties=move_props, n_agents=N_AGENTS, pomdp_radius=2,  max_steps=400, omit_agent_slice_in_obs=False, combin_agent_slices_in_obs=True) | ||||
| 
 | ||||
|     dqn, target_dqn = BaseDQN(), BaseDQN() | ||||
|     learner = BaseQlearner(dqn, target_dqn, env, BaseBuffer(40000), target_update=3500, lr=0.0007, gamma=0.99, n_agents=N_AGENTS, tau=0.95, max_grad_norm=10, | ||||
|     dqn, target_dqn = BaseDDQN(), BaseDDQN() | ||||
|     learner = MDQN(dqn, target_dqn, env, 40000, target_update=3500, lr=0.0007, gamma=0.99, n_agents=N_AGENTS, tau=0.95, max_grad_norm=10, | ||||
|                    train_every_n_steps=4, eps_end=0.025, n_grad_steps=1, reg_weight=0.1, exploration_fraction=0.25, batch_size=64) | ||||
|     learner.learn(100000) | ||||
		Reference in New Issue
	
	Block a user
	 romue
					romue