mirror of
https://github.com/illiumst/marl-factory-grid.git
synced 2025-05-23 15:26:43 +02:00
Properties
This commit is contained in:
parent
4b24b4f0f2
commit
b16f316f08
@ -8,6 +8,10 @@ from environments import helpers as h
|
|||||||
|
|
||||||
class BaseFactory:
|
class BaseFactory:
|
||||||
|
|
||||||
|
@property
|
||||||
|
def movement_actions(self):
|
||||||
|
return (int(self.allow_vertical_movement) + int(self.allow_horizontal_movement)) * 4
|
||||||
|
|
||||||
def __init__(self, level='simple', n_agents=1, max_steps=1e3):
|
def __init__(self, level='simple', n_agents=1, max_steps=1e3):
|
||||||
self.n_agents = n_agents
|
self.n_agents = n_agents
|
||||||
self.max_steps = max_steps
|
self.max_steps = max_steps
|
||||||
@ -64,8 +68,7 @@ class BaseFactory:
|
|||||||
return self.state, r, self.done, info
|
return self.state, r, self.done, info
|
||||||
|
|
||||||
def _is_moving_action(self, action):
|
def _is_moving_action(self, action):
|
||||||
movement_actions = (int(self.allow_vertical_movement) + int(self.allow_horizontal_movement)) * 4
|
if action < self.movement_actions:
|
||||||
if action < movement_actions:
|
|
||||||
return True
|
return True
|
||||||
else:
|
else:
|
||||||
return False
|
return False
|
||||||
@ -106,6 +109,9 @@ class BaseFactory:
|
|||||||
# Agent seems to be trying to collide in this step
|
# Agent seems to be trying to collide in this step
|
||||||
return old_pos, valid
|
return old_pos, valid
|
||||||
|
|
||||||
|
def agent_i_position(self, agent_i):
|
||||||
|
return np.argwhere(self.state[h.AGENT_START_IDX+agent_i] == h.IS_OCCUPIED_CELL)
|
||||||
|
|
||||||
@property
|
@property
|
||||||
def free_cells(self) -> np.ndarray:
|
def free_cells(self) -> np.ndarray:
|
||||||
free_cells = self.state.sum(0)
|
free_cells = self.state.sum(0)
|
||||||
|
@ -1,6 +1,8 @@
|
|||||||
import numpy as np
|
import numpy as np
|
||||||
from environments.factory.base_factory import BaseFactory
|
from environments.factory.base_factory import BaseFactory
|
||||||
from collections import namedtuple
|
from collections import namedtuple
|
||||||
|
from typing import Iterable
|
||||||
|
from environments import helpers as h
|
||||||
|
|
||||||
DIRT_INDEX = -1
|
DIRT_INDEX = -1
|
||||||
DirtProperties = namedtuple('DirtProperties', ['clean_amount', 'max_spawn_ratio', 'gain_amount'],
|
DirtProperties = namedtuple('DirtProperties', ['clean_amount', 'max_spawn_ratio', 'gain_amount'],
|
||||||
@ -9,29 +11,49 @@ DirtProperties = namedtuple('DirtProperties', ['clean_amount', 'max_spawn_ratio'
|
|||||||
|
|
||||||
class GettingDirty(BaseFactory):
|
class GettingDirty(BaseFactory):
|
||||||
|
|
||||||
|
@property
|
||||||
|
def _clean_up_action(self):
|
||||||
|
return self.movement_actions + 1
|
||||||
|
|
||||||
def __init__(self, *args, dirt_properties:DirtProperties, **kwargs):
|
def __init__(self, *args, dirt_properties:DirtProperties, **kwargs):
|
||||||
super(GettingDirty, self).__init__(*args, **kwargs)
|
super(GettingDirty, self).__init__(*args, **kwargs)
|
||||||
self._dirt_properties = dirt_properties
|
self._dirt_properties = dirt_properties
|
||||||
self.slice_strings.update({self.state.shape[0]-1: 'dirt'})
|
self.slice_strings.update({self.state.shape[0]-1: 'dirt'})
|
||||||
|
|
||||||
def spawn_dirt(self):
|
def spawn_dirt(self) -> None:
|
||||||
free_for_dirt = self.free_cells
|
free_for_dirt = self.free_cells
|
||||||
# randomly distribute dirt across the grid
|
# randomly distribute dirt across the grid
|
||||||
n_dirt_tiles = self._dirt_properties.max_spawn_ratio * len(free_for_dirt)
|
n_dirt_tiles = self._dirt_properties.max_spawn_ratio * len(free_for_dirt)
|
||||||
for x, y in free_for_dirt[:n_dirt_tiles]:
|
for x, y in free_for_dirt[:n_dirt_tiles]:
|
||||||
self.state[DIRT_INDEX, x, y] += self._dirt_properties.gain_amount
|
self.state[DIRT_INDEX, x, y] += self._dirt_properties.gain_amount
|
||||||
|
|
||||||
def additional_actions(self, agent_i, action) -> ((int, int), bool):
|
def clean_up(self, pos: (int, int)) -> ((int, int), bool):
|
||||||
if action ==
|
new_dirt_amount = self.state[DIRT_INDEX][pos] - self._dirt_properties.clean_amount
|
||||||
|
cleanup_was_sucessfull: bool
|
||||||
|
if self.state[DIRT_INDEX][pos] == h.IS_FREE_CELL:
|
||||||
|
cleanup_was_sucessfull = False
|
||||||
|
return pos, cleanup_was_sucessfull
|
||||||
|
else:
|
||||||
|
cleanup_was_sucessfull = True
|
||||||
|
self.state[DIRT_INDEX][pos] = max(new_dirt_amount, h.IS_FREE_CELL)
|
||||||
|
return pos, cleanup_was_sucessfull
|
||||||
|
|
||||||
def reset(self):
|
|
||||||
|
def additional_actions(self, agent_i, action) -> ((int, int), bool):
|
||||||
|
if not action == self._is_moving_action(action):
|
||||||
|
if action == self._clean_up_action:
|
||||||
|
self.clean_up()
|
||||||
|
else:
|
||||||
|
raise RuntimeError('This should not happen!!!')
|
||||||
|
|
||||||
|
def reset(self) -> None:
|
||||||
# ToDo: When self.reset returns the new states and stuff, use it here!
|
# ToDo: When self.reset returns the new states and stuff, use it here!
|
||||||
super().reset() # state, agents, ... =
|
super().reset() # state, agents, ... =
|
||||||
dirt_slice = np.zeros((1, *self.state.shape[1:]))
|
dirt_slice = np.zeros((1, *self.state.shape[1:]))
|
||||||
self.state = np.concatenate((self.state, dirt_slice)) # dirt is now the last slice
|
self.state = np.concatenate((self.state, dirt_slice)) # dirt is now the last slice
|
||||||
self.spawn_dirt()
|
self.spawn_dirt()
|
||||||
|
|
||||||
def calculate_reward(self, collisions_vecs, actions, r):
|
def calculate_reward(self, collisions_vec: np.ndarray, actions: Iterable[int], r: int) -> (int, dict):
|
||||||
for agent_i, cols in enumerate(collisions_vecs):
|
for agent_i, cols in enumerate(collisions_vecs):
|
||||||
cols = np.argwhere(cols != 0).flatten()
|
cols = np.argwhere(cols != 0).flatten()
|
||||||
print(f't = {self.steps}\tAgent {agent_i} has collisions with '
|
print(f't = {self.steps}\tAgent {agent_i} has collisions with '
|
||||||
|
Loading…
x
Reference in New Issue
Block a user