Included method to tackle emergence in two_rooms_one_door_modified + Better access of different settings in marl_adapted + Added and modified a lot of config files

This commit is contained in:
Julian Schönberger
2024-05-10 11:57:26 +02:00
parent 89ce723690
commit a25b04e092
15 changed files with 376 additions and 119 deletions

View File

@ -13,9 +13,7 @@ from marl_factory_grid.algorithms.marl.base_a2c import PolicyGradient, cumulate_
from marl_factory_grid.algorithms.marl.memory import MARLActorCriticMemory
from marl_factory_grid.algorithms.utils import add_env_props, instantiate_class
from pathlib import Path
import pandas as pd
from collections import deque
from stable_baselines3 import PPO
from marl_factory_grid.environment.actions import Noop
from marl_factory_grid.modules import Clean, DoorUse
@ -53,22 +51,25 @@ class A2C:
self.factory = add_env_props(train_cfg)
self.eval_factory = add_env_props(eval_cfg)
self.__training = True
self.train_cfg = train_cfg
self.eval_cfg = eval_cfg
self.cfg = train_cfg
self.n_agents = train_cfg[nms.AGENT][nms.N_AGENTS]
self.setup()
self.reward_development = []
self.action_probabilities = {agent_idx:[] for agent_idx in range(self.n_agents)}
def setup(self):
# act_dim=6 for dirt_quadrant
dirt_piles_positions = [self.factory.state.entities['DirtPiles'][pile_idx].pos for pile_idx in
range(len(self.factory.state.entities['DirtPiles']))]
if self.cfg[nms.ALGORITHM]["pile-observability"] == "all":
obs_dim = 2 + 2*len(dirt_piles_positions)
else:
obs_dim = 4
self.agents = [PolicyGradient(self.factory, agent_id=i, obs_dim=obs_dim) for i in range(self.n_agents)]
# self.agents[0].pi.load_model_parameters("/Users/julian/Coding/Projects/PyCharmProjects/EDYS/study_out/run5/Wolfgang_PolicyNet_model_parameters.pth")
self.doors_exist = "Doors" in self.factory.state.entities.keys()
self.obs_dim = obs_dim
self.act_dim = 4
# act_dim=4, because we want the agent to only learn a routing problem
self.agents = [PolicyGradient(self.factory, agent_id=i, obs_dim=obs_dim, act_dim=self.act_dim) for i in range(self.n_agents)]
if self.cfg[nms.ENV]["save_and_log"]:
# Create results folder
runs = os.listdir("../study_out/")
@ -79,6 +80,12 @@ class A2C:
# Save settings in results folder
self.save_configs()
def set_cfg(self, eval=False):
if eval:
self.cfg = self.eval_cfg
else:
self.cfg = self.train_cfg
@classmethod
def _as_torch(cls, x):
if isinstance(x, np.ndarray):
@ -249,10 +256,50 @@ class A2C:
indices.append(list(range(start_index, end_index)))
start_index = end_index
# Static form: auxiliary pile, primary pile, auxiliary pile, ...
# -> Starting with index 0 even piles are auxiliary piles, odd piles are primary piles
if self.cfg[nms.ALGORITHM]["auxiliary_piles"] and "Doors" in env.state.entities.keys():
door_positions = [door.pos for door in env.state.entities["Doors"]]
agent_positions = [env.state.moving_entites[agent_idx].pos for agent_idx in range(self.n_agents)]
distances = {door_pos:[] for door_pos in door_positions}
# Calculate distance of every agent to every door
for door_pos in door_positions:
for agent_pos in agent_positions:
distances[door_pos].append(np.abs(door_pos[0] - agent_pos[0]) + np.abs(door_pos[1] - agent_pos[1]))
def duplicate_indices(lst, item):
return [i for i, x in enumerate(lst) if x == item]
# Get agent indices of agents with same distance to door
affected_agents = {door_pos:{} for door_pos in door_positions}
for door_pos in distances.keys():
dist = distances[door_pos]
dist_set = set(dist)
for d in dist_set:
affected_agents[door_pos][str(d)] = duplicate_indices(dist, d)
# TODO: Make generic for multiple doors
updated_indices = []
if len(affected_agents[door_positions[0]]) == 0:
# Remove auxiliary piles for all agents
updated_indices = [[ele for ele in lst if ele % 2 != 0] for lst in indices]
else:
for distance, agent_indices in affected_agents[door_positions[0]].items():
# Pick random agent to keep auxiliary pile and remove it for all others
#selected_agent = np.random.choice(agent_indices)
selected_agent = 0
for agent_idx in agent_indices:
if agent_idx == selected_agent:
updated_indices.append(indices[agent_idx])
else:
updated_indices.append([ele for ele in indices[agent_idx] if ele % 2 != 0])
indices = updated_indices
return indices
def update_target_pile(self, env, agent_idx, target_pile):
indices = self.distribute_indices(env)
def update_target_pile(self, env, agent_idx, target_pile, indices):
if self.cfg[nms.ALGORITHM]["pile-order"] in ["fixed", "random", "none", "dynamic", "smart"]:
if target_pile[agent_idx] + 1 < len(self.get_dirt_piles_positions(env)):
target_pile[agent_idx] += 1
@ -282,9 +329,7 @@ class A2C:
if door := self.door_is_close(env, agent_idx):
if door.is_closed:
action.append(next(action_i for action_i, a in enumerate(env.state["Agent"][agent_idx].actions) if a.name == "use_door"))
if not det:
# Include agent experience entry manually
agent._episode.append((None, None, None, agent.vf(agent_obs)))
# Don't include action in agent experience
else:
if det:
action.append(int(agent.pi(agent_obs, det=True)[0]))
@ -335,7 +380,7 @@ class A2C:
obs[0][1][x][y] = 1
print("Missing agent position")
def handle_dirt(self, env, cleaned_dirt_piles, ordered_dirt_piles, target_pile, reward, done):
def handle_dirt(self, env, cleaned_dirt_piles, ordered_dirt_piles, target_pile, indices, reward, done):
# Check if agent moved on field with dirt. If that is the case collect dirt automatically
agent_positions = [env.state.moving_entites[agent_idx].pos for agent_idx in range(self.n_agents)]
dirt_piles_positions = self.get_dirt_piles_positions(env)
@ -354,7 +399,7 @@ class A2C:
# Only simulate collecting the dirt
for idx, pos in enumerate(agent_positions):
if pos in self.get_dirt_piles_positions(env) and not cleaned_dirt_piles[idx][pos]:
if pos in cleaned_dirt_piles[idx].keys() and not cleaned_dirt_piles[idx][pos]:
# print(env.state.entities["Agent"][idx], pos, idx, target_pile, ordered_dirt_piles)
# If dirt piles should be cleaned in a specific order
if ordered_dirt_piles[idx]:
@ -362,7 +407,7 @@ class A2C:
reward[idx] += 50 # 1
cleaned_dirt_piles[idx][pos] = True
# Set pointer to next dirt pile
self.update_target_pile(env, idx, target_pile)
self.update_target_pile(env, idx, target_pile, indices)
self.update_ordered_dirt_piles(idx, cleaned_dirt_piles, ordered_dirt_piles, env, target_pile)
if self.cfg[nms.ALGORITHM]["pile_all_done"] == "single":
done = True
@ -370,13 +415,11 @@ class A2C:
# Reset cleaned_dirt_piles indicator
for pos in dirt_piles_positions:
cleaned_dirt_piles[idx][pos] = False
break
else:
reward[idx] += 50 # 1
cleaned_dirt_piles[idx][pos] = True
break
if self.cfg[nms.ALGORITHM]["pile_all_done"] == "all":
if self.cfg[nms.ALGORITHM]["pile_all_done"] in ["all", "distributed"]:
if all([all(cleaned_dirt_piles[i].values()) for i in range(self.n_agents)]):
done = True
@ -445,9 +488,10 @@ class A2C:
env.render()
n_steps, max_steps = [self.cfg[nms.ALGORITHM][k] for k in [nms.N_STEPS, nms.MAX_STEPS]]
global_steps, episode = 0, 0
indices = self.distribute_indices(env)
dirt_piles_positions = self.get_dirt_piles_positions(env)
used_actions = {i:0 for i in range(len(env.state.entities["Agent"][0]._actions))} # Assume both agents have the same actions
target_pile = [partition[0] for partition in self.distribute_indices(env)] # pointer that points to the target pile for each agent. (point to same pile, point to different piles)
target_pile = [partition[0] for partition in indices] # pointer that points to the target pile for each agent. (point to same pile, point to different piles)
cleaned_dirt_piles = [{pos: False for pos in dirt_piles_positions} for _ in range(self.n_agents)] # Have own dictionary for each agent
while global_steps < max_steps:
@ -457,7 +501,7 @@ class A2C:
ordered_dirt_piles = self.get_ordered_dirt_piles(env, cleaned_dirt_piles, target_pile)
# Reset current target pile at episode begin if all piles have to be cleaned in one episode
if self.cfg[nms.ALGORITHM]["pile_all_done"] == "all":
target_pile = [partition[0] for partition in self.distribute_indices(env)]
target_pile = [partition[0] for partition in indices]
cleaned_dirt_piles = [{pos: False for pos in dirt_piles_positions} for _ in range(self.n_agents)]
"""passed_fields = [[] for _ in range(self.n_agents)]"""
@ -476,7 +520,8 @@ class A2C:
while not all(done):
# 0="North", 1="East", 2="South", 3="West", 4="Clean", 5="Noop"
action = self.use_door_or_move(env, obs, cleaned_dirt_piles, target_pile) if self.doors_exist else self.get_actions(obs)
action = self.use_door_or_move(env, obs, cleaned_dirt_piles, target_pile) \
if "Doors" in env.state.entities.keys() else self.get_actions(obs)
used_actions[int(action[0])] += 1
_, next_obs, reward, done, info = env.step(action)
if done:
@ -491,7 +536,7 @@ class A2C:
# with the updated observation. The observation that is saved to the rollout buffer, which resulted in reaching
# the target pile should not be updated before saving. Thus, the self.transform_observations call must happen
# before this method is called.
reward, done = self.handle_dirt(env, cleaned_dirt_piles, ordered_dirt_piles, target_pile, reward, done)
reward, done = self.handle_dirt(env, cleaned_dirt_piles, ordered_dirt_piles, target_pile, indices, reward, done)
if n_steps != 0 and (global_steps + 1) % n_steps == 0:
print("max_steps reached")
@ -499,9 +544,11 @@ class A2C:
done = [done] * self.n_agents if isinstance(done, bool) else done
for ag_i, agent in enumerate(self.agents):
# Add agent results into respective rollout buffers
agent._episode[-1] = (next_obs[ag_i], action[ag_i], reward[ag_i], agent._episode[-1][-1])
# For forced actions like door opening, we have to call the step function with this action, but
# since we are not allowed to exceed the dimensions range, we can't log the corresponding step info.
if action[ag_i] in range(self.act_dim):
# Add agent results into respective rollout buffers
agent._episode[-1] = (next_obs[ag_i], action[ag_i], reward[ag_i], agent._episode[-1][-1])
if self.cfg[nms.ENV][nms.TRAIN_RENDER]:
env.render()
@ -522,7 +569,7 @@ class A2C:
self.plot_reward_development()
if self.cfg[nms.ENV]["save_and_log"]:
self.create_info_maps(env, used_actions, target_pile)
self.create_info_maps(env, used_actions)
self.save_agent_models()
@ -530,21 +577,29 @@ class A2C:
@torch.inference_mode(True)
def eval_loop(self, n_episodes, render=False):
env = self.eval_factory
self.set_cfg(eval=True)
if self.cfg[nms.ENV][nms.EVAL_RENDER]:
env.render()
episode, results = 0, []
dirt_piles_positions = self.get_dirt_piles_positions(env)
target_pile = [partition[0] for partition in self.distribute_indices(env)] # pointer that points to the target pile for each agent. (point to same pile, point to different piles)
cleaned_dirt_piles = [{pos: False for pos in dirt_piles_positions} for _ in range(self.n_agents)]
indices = self.distribute_indices(env)
target_pile = [partition[0] for partition in indices] # pointer that points to the target pile for each agent. (point to same pile, point to different piles)
if self.cfg[nms.ALGORITHM]["pile_all_done"] == "distributed":
cleaned_dirt_piles = [{dirt_piles_positions[idx]: False for idx in indices[i]} for i in range(self.n_agents)]
else:
cleaned_dirt_piles = [{pos: False for pos in dirt_piles_positions} for _ in range(self.n_agents)]
while episode < n_episodes:
obs = env.reset()
self.set_agent_spawnpoint(env)
"""obs = list(obs.values())"""
# Reset current target pile at episode begin if all piles have to be cleaned in one episode
if self.cfg[nms.ALGORITHM]["pile_all_done"] == "all":
target_pile = [partition[0] for partition in self.distribute_indices(env)]
cleaned_dirt_piles = [{pos: False for pos in dirt_piles_positions} for _ in range(self.n_agents)]
if self.cfg[nms.ALGORITHM]["pile_all_done"] in ["all", "distributed"]:
target_pile = [partition[0] for partition in indices]
if self.cfg[nms.ALGORITHM]["pile_all_done"] == "distributed":
cleaned_dirt_piles = [{dirt_piles_positions[idx]: False for idx in indices[i]} for i in range(self.n_agents)]
else:
cleaned_dirt_piles = [{pos: False for pos in dirt_piles_positions} for _ in range(self.n_agents)]
ordered_dirt_piles = self.get_ordered_dirt_piles(env, cleaned_dirt_piles, target_pile)
@ -556,9 +611,9 @@ class A2C:
self.factory.state['Agent'][i].actions.extend([Clean(), Noop()])"""
while not all(done):
action = self.use_door_or_move(env, obs, cleaned_dirt_piles, target_pile, det=True) if self.doors_exist else self.execute_policy(obs, env, cleaned_dirt_piles) # zero exploration
print(action)
_, next_obs, reward, done, info = env.step(action)
action = self.use_door_or_move(env, obs, cleaned_dirt_piles, target_pile, det=True) \
if "Doors" in env.state.entities.keys() else self.execute_policy(obs, env, cleaned_dirt_piles) # zero exploration
_, next_obs, reward, done, info = env.step(action) # Note that this call seems to flip the lists in indices
if done:
print("DoneAtMaxStepsReached:", len(self.agents[0]._episode))
@ -566,7 +621,7 @@ class A2C:
# reward = self.reward_distance(env, obs, target_pile, reward)
# Check and handle if agent is on field with dirt
reward, done = self.handle_dirt(env, cleaned_dirt_piles, ordered_dirt_piles, target_pile, reward, done)
reward, done = self.handle_dirt(env, cleaned_dirt_piles, ordered_dirt_piles, target_pile, indices, reward, done)
# Get transformed next_obs that might have been updated because of self.handle_dirt.
# For eval, where pile_all_done is "all", it's mandatory that the potential change of the target pile
@ -614,7 +669,7 @@ class A2C:
self.agents[idx].pi.load_model_parameters(f"{run_path}/{agent_name}_PolicyNet_model_parameters.pth")
self.agents[idx].vf.load_model_parameters(f"{run_path}/{agent_name}_ValueNet_model_parameters.pth")
def create_info_maps(self, env, used_actions, target_pile):
def create_info_maps(self, env, used_actions):
# Create value map
all_valid_observations = self.get_all_observations(env)
dirt_piles_positions = self.get_dirt_piles_positions(env)
@ -624,7 +679,7 @@ class A2C:
max(t[0] for t in env.state.entities.floorlist) + 2, max(t[1] for t in env.state.entities.floorlist) + 2)
value_maps = [np.zeros(observations_shape) for _ in self.agents]
likeliest_action = [np.full(observations_shape, np.NaN) for _ in self.agents]
action_probabilities = [np.zeros((observations_shape[0], observations_shape[1], env.action_space[0].n)) for
action_probabilities = [np.zeros((observations_shape[0], observations_shape[1], self.act_dim)) for
_ in self.agents]
for obs in all_valid_observations[obs_layer]:
"""obs = self._as_torch(obs).view(-1).to(torch.float32)"""
@ -663,6 +718,7 @@ class A2C:
txt_file.write("=======Action Probabilities=======\n")
print("=======Action Probabilities=======")
for agent_idx, pmap in enumerate(action_probabilities):
self.action_probabilities[agent_idx].append(pmap)
txt_file.write(f"Action probability map of agent {agent_idx} for target pile {pos}:\n")
print(f"Action probability map of agent {agent_idx} for target pile {pos}:")
for d in range(pmap.shape[0]):

View File

@ -25,8 +25,9 @@ algorithm:
n_steps: 0 # How much experience should be sampled at most (n-TD) until the next value and policy update is performed. Default 0: MC
max_steps: 200000
advantage: "Advantage-AC" # Options: "Advantage-AC", "TD-Advantage-AC", "Reinforce"
pile-order: "dynamic" # Options: "fixed", "random", "none", "agents", "dynamic", "smart" (Use "fixed", "random" and "none" for single agent training and the other for multi agent inference)
pile-order: "dynamic" # Use "dynamic" to see emergent phenomenon and "smart" to prevent it
pile-observability: "single" # Options: "single", "all"
pile_all_done: "all" # Options: "single", "all" ("single" for training, "all" for eval)
auxiliary_piles: False # Option that is only considered when pile-order = "agents"
chunk-episode: 20000 # Chunk size. (0 = update networks with full episode at once)

View File

@ -0,0 +1,34 @@
agent:
classname: marl_factory_grid.algorithms.marl.networks.RecurrentAC
n_agents: 2
obs_emb_size: 96
action_emb_size: 16
hidden_size_actor: 64
hidden_size_critic: 64
use_agent_embedding: False
env:
classname: marl_factory_grid.configs.custom
env_name: "custom/two_rooms_one_door_modified_train_config"
n_agents: 2
max_steps: 250
pomdp_r: 2
stack_n_frames: 0
individual_rewards: True
train_render: False
eval_render: True
save_and_log: False
method: marl_factory_grid.algorithms.marl.LoopSEAC
algorithm:
gamma: 0.99
entropy_coef: 0.01
vf_coef: 0.05
n_steps: 0 # How much experience should be sampled at most (n-TD) until the next value and policy update is performed. Default 0: MC
max_steps: 260000
advantage: "Advantage-AC" # Options: "Advantage-AC", "TD-Advantage-AC", "Reinforce"
pile-order: "agents" # Options: "fixed", "random", "none", "agents", "dynamic", "smart" (Use "fixed", "random" and "none" for single agent training and the other for multi agent inference)
pile-observability: "single" # Options: "single", "all"
pile_all_done: "distributed" # Options: "single", "all" ("single" for training, "all" and "distributed" for eval)
auxiliary_piles: True # Use True to see emergent phenomenon and False to prevent it
chunk-episode: 20000 # Chunk size. (0 = update networks with full episode at once)

View File

@ -16,7 +16,7 @@ env:
individual_rewards: True
train_render: False
eval_render: True
save_and_log: False
save_and_log: True
method: marl_factory_grid.algorithms.marl.LoopSEAC
algorithm:
gamma: 0.99
@ -28,5 +28,6 @@ algorithm:
pile-order: "fixed" # Options: "fixed", "random", "none", "agents", "dynamic", "smart" (Use "fixed", "random" and "none" for single agent training and the other for multi agent inference)
pile-observability: "single" # Options: "single", "all"
pile_all_done: "single" # Options: "single", "all" ("single" for training, "all" for eval)
auxiliary_piles: False # Option that is only considered when pile-order = "agents"
chunk-episode: 20000 # Chunk size. (0 = update networks with full episode at once)

View File

@ -1,3 +1,5 @@
marl_factory_grid>environment>rules.py#SpawnEntity.on_reset()
marl_factory_grid>environment>rewards.py
marl_factory_grid>modules>clean_up>groups.py#DirtPiles.trigger_spawn()
marl_factory_grid>environment>rules.py#AgentSpawnRule
marl_factory_grid>utils>states.py#GameState.__init__()

View File

@ -1,6 +1,6 @@
agent:
classname: marl_factory_grid.algorithms.marl.networks.RecurrentAC
n_agents: 2
n_agents: 1
obs_emb_size: 96
action_emb_size: 16
hidden_size_actor: 64
@ -8,21 +8,27 @@ agent:
use_agent_embedding: False
env:
classname: marl_factory_grid.configs.custom
env_name: "custom/two_rooms_one_door_modified_random_pos"
n_agents: 2
env_name: "custom/two_rooms_one_door_modified_train_config"
n_agents: 1
max_steps: 250
pomdp_r: 2
stack_n_frames: 0
individual_rewards: True
train_render: False
eval_render: True
save_and_log: False
method: marl_factory_grid.algorithms.marl.LoopSEAC
algorithm:
gamma: 0.99
entropy_coef: 0.01
vf_coef: 0.05
n_steps: 0 # How much experience should be sampled at most (n-TD) until the next value and policy update is performed. Default 0: MC
max_steps: 100000
advantage: "TD-Advantage-AC" # Options: "Advantage-AC", "TD-Advantage-AC", "Reinforce"
pile-order: "agents" # Options: "fixed", "random", "none", "agents"
max_steps: 260000
advantage: "Advantage-AC" # Options: "Advantage-AC", "TD-Advantage-AC", "Reinforce"
pile-order: "fixed" # Options: "fixed", "random", "none", "agents", "dynamic", "smart" (Use "fixed", "random" and "none" for single agent training and the other for multi agent inference)
pile-observability: "single" # Options: "single", "all"
pile_all_done: "single" # Options: "single", "all" ("single" for training, "all" for eval)
auxiliary_piles: False # Option that is only considered when pile-order = "agents"
chunk-episode: 20000 # Chunk size. (0 = update networks with full episode at once)

View File

@ -19,31 +19,21 @@ Agents:
Sigmund:
Actions:
- Move4
#- Clean
- Noop
Observations:
# - Walls
# - Other
- DirtPiles
- Self
Positions:
- (9,1)
#- (9,9)
#- (4,5)
Wolfgang:
Actions:
- Move4
#- Clean
- Noop
Observations:
# - Walls
# - Other
- DirtPiles
- Self
Positions:
- (9,5)
#- (9,9)
#- (4,5)
Entities:
DirtPiles:

View File

@ -22,8 +22,6 @@ Agents:
#- Clean
#- Noop
Observations:
# - Walls
# - Other
- DirtPiles
- Self
Positions:
@ -39,8 +37,6 @@ Agents:
#- Clean
#- Noop
Observations:
# - Walls
# - Other
- DirtPiles
- Self
Positions:

View File

@ -14,40 +14,30 @@ General:
# In "two rooms one door" scenario 2 agents spawn in 2 different rooms that are connected by a single door. Their aim
# is to reach the destination in the room they didn't spawn in leading to a conflict at the door.
Agents:
Wolfgang:
Actions:
- Move8
- DoorUse
- Noop
Observations:
- DirtPiles
- Self
#Positions:
#- (1,1)
#- (2,1)
#- (3,1)
#- (4,1)
#- (5,1)
#- (6,1)
Sigmund:
Actions:
- Move8
- Move4
- DoorUse
- Noop
Observations:
- DirtPiles
- Self
#Positions:
#- (1,13)
#- (2,13)
#- (3,13)
#- (4,13)
#- (5,13)
#- (6,13)
Positions:
- (3,1)
Wolfgang:
Actions:
- Move4
- DoorUse
- Noop
Observations:
- DirtPiles
- Self
Positions:
- (3,13)
Entities:
DirtPiles:
coords_or_quantity: (3,12), (3,2) # This order is required, because agent 0 needs to reach (3, 12) and agent 1 (3, 2)
coords_or_quantity: (2,1), (3,12), (2,13), (3,2) # Static form: auxiliary pile, primary pile, auxiliary pile, ...
initial_amount: 0.5 # <1 to ensure that the robot which first attempts to clean this field, can remove the dirt in one action
clean_amount: 1
dirt_spawn_r_var: 0
@ -58,8 +48,8 @@ Entities:
Rules:
# Environment Dynamics
DoorAutoClose:
close_frequency: 10
#DoorAutoClose:
#close_frequency: 10
# Utilities
# This rule defines the collision mechanic, introduces a related DoneCondition and lets you specify rewards.

View File

@ -14,19 +14,19 @@ General:
# In "two rooms one door" scenario 2 agents spawn in 2 different rooms that are connected by a single door. Their aim
# is to reach the destination in the room they didn't spawn in leading to a conflict at the door.
Agents:
Wolfgang:
Sigmund:
Actions:
- Move8
- Move4
- DoorUse
- Noop
Observations:
- DirtPiles
- Self
Positions:
- (3,1) # Agent spawnpoint
Sigmund:
- (3,1)
Wolfgang:
Actions:
- Move8
- Move4
- DoorUse
- Noop
Observations:
@ -37,7 +37,7 @@ Agents:
Entities:
DirtPiles:
coords_or_quantity: (3,12), (3,2)
coords_or_quantity: (3,12), (3,2) # Static form: auxiliary pile, primary pile, auxiliary pile, ...
initial_amount: 0.5 # <1 to ensure that the robot which first attempts to clean this field, can remove the dirt in one action
clean_amount: 1
dirt_spawn_r_var: 0
@ -48,8 +48,8 @@ Entities:
Rules:
# Environment Dynamics
DoorAutoClose:
close_frequency: 10
#DoorAutoClose:
#close_frequency: 10
# Utilities
# This rule defines the collision mechanic, introduces a related DoneCondition and lets you specify rewards.
@ -58,5 +58,5 @@ Rules:
# Done Conditions
#DoneOnAllDirtCleaned:
#DoneAtMaxStepsReached:
#max_steps: 100
#DoneAtMaxStepsReached: # Mayne Required since door blocking will result in infinite loop
#max_steps: 1000

View File

@ -19,11 +19,8 @@ Agents:
#Sigmund:
#Actions:
#- Move4
#- Clean
#- Noop
#Observations:
# - Walls
# - Other
#- DirtPiles
#- Self
#Positions:
@ -33,17 +30,13 @@ Agents:
Wolfgang:
Actions:
- Move4
#- Clean
#- Noop
Observations:
# - Walls
# - Other
- DirtPiles
- Self
Positions:
- (9,5)
#- (9,9)
#- (4,5)
- (9,9)
- (4,5)
Entities:
DirtPiles:

View File

@ -19,11 +19,7 @@ Agents:
#Sigmund:
#Actions:
#- Move4
#- Clean
#- Noop
#Observations:
# - Walls
# - Other
#- DirtPiles
#- Self
#Positions:
@ -36,11 +32,7 @@ Agents:
Wolfgang:
Actions:
- Move4
#- Clean
#- Noop
Observations:
# - Walls
# - Other
- DirtPiles
- Self
Positions:

View File

@ -0,0 +1,62 @@
General:
env_seed: 69
# Individual vs global rewards
individual_rewards: true
# The level.txt file to load from marl_factory_grid/levels
level_name: two_rooms_modified
# View Radius; 0 = full observatbility
pomdp_r: 0
# Print all messages and events
verbose: false
# Run tests
tests: false
# In "two rooms one door" scenario 2 agents spawn in 2 different rooms that are connected by a single door. Their aim
# is to reach the destination in the room they didn't spawn in leading to a conflict at the door.
Agents:
#Sigmund:
#Actions:
#- Move4
#- DoorUse
#Observations:
#- DirtPiles
#- Self
#Positions:
#- (3,1)
#- (2,1)
Wolfgang:
Actions:
- Move4
- DoorUse
Observations:
- DirtPiles
- Self
Positions:
- (3,13)
- (2,13)
Entities:
DirtPiles:
coords_or_quantity: (2,13), (3,2) # (2,1), (3,12)
initial_amount: 0.5 # <1 to ensure that the robot which first attempts to clean this field, can remove the dirt in one action
clean_amount: 1
dirt_spawn_r_var: 0
max_global_amount: 12
max_local_amount: 1
Doors: { }
Rules:
# Environment Dynamics
#DoorAutoClose:
#close_frequency: 10
# Utilities
# This rule defines the collision mechanic, introduces a related DoneCondition and lets you specify rewards.
WatchCollisions:
done_at_collisions: false
# Done Conditions
#DoneOnAllDirtCleaned:
#DoneAtMaxStepsReached: # Mayne Required since door blocking will result in infinite loop
#max_steps: 1000

View File

@ -0,0 +1,75 @@
General:
env_seed: 69
# Individual vs global rewards
individual_rewards: true
# The level.txt file to load from marl_factory_grid/levels
level_name: two_rooms_modified
# View Radius; 0 = full observatbility
pomdp_r: 0
# Print all messages and events
verbose: false
# Run tests
tests: false
# In "two rooms one door" scenario 2 agents spawn in 2 different rooms that are connected by a single door. Their aim
# is to reach the destination in the room they didn't spawn in leading to a conflict at the door.
Agents:
#Sigmund:
#Actions:
#- Move4
#Observations:
#- DirtPiles
#- Self
#Positions:
#- (3,1)
#- (1,1)
#- (3,1)
#- (5,1)
#- (3,1)
#- (1,8)
#- (3,1)
#- (5,8)
Wolfgang:
Actions:
- Move4
Observations:
- DirtPiles
- Self
Positions:
- (3,13)
- (2,13)
- (1,13)
- (3,13)
- (1,8)
- (2,6)
- (3,10)
- (4,6)
Entities:
DirtPiles:
coords_or_quantity: (2,13), (3,2) # (2,1), (3,12)
initial_amount: 0.5 # <1 to ensure that the robot which first attempts to clean this field, can remove the dirt in one action
clean_amount: 1
dirt_spawn_r_var: 0
max_global_amount: 12
max_local_amount: 1
#Doors: { }
Rules:
# Environment Dynamics
#DoorAutoClose:
#close_frequency: 10
# Utilities
# This rule defines the collision mechanic, introduces a related DoneCondition and lets you specify rewards.
WatchCollisions:
done_at_collisions: false
# Done Conditions
DoneOnAllDirtCleaned:
#DoneAtMaxStepsReached:
#max_steps: 100
AgentSpawnRule:
spawn_rule: "order"

View File

@ -3,13 +3,13 @@ from pathlib import Path
from marl_factory_grid.algorithms.marl.a2c_dirt import A2C
from marl_factory_grid.algorithms.utils import load_yaml_file
def dirt_quadrant_single_agent_training():
cfg_path = Path('../marl_factory_grid/algorithms/marl/configs/dirt_quadrant_config.yaml')
def single_agent_training(config_name):
cfg_path = Path(f'../marl_factory_grid/algorithms/marl/configs/{config_name}_config.yaml')
train_cfg = load_yaml_file(cfg_path)
# Use environment config with fixed spawnpoints for eval
eval_cfg = copy.deepcopy(train_cfg)
eval_cfg["env"]["env_name"] = "custom/dirt_quadrant_eval_config"
eval_cfg["env"]["env_name"] = f"custom/{config_name}_eval_config"
print("Training phase")
agent = A2C(train_cfg, eval_cfg)
@ -17,22 +17,81 @@ def dirt_quadrant_single_agent_training():
print("Evaluation phase")
# Have consecutive episode for eval in single agent case
train_cfg["algorithm"]["pile_all_done"] = "all"
# agent.load_agents(["run0", "run1"])
agent.eval_loop(10)
print(agent.action_probabilities)
def dirt_quadrant_multi_agent_eval():
cfg_path = Path('../marl_factory_grid/algorithms/marl/configs/MultiAgentConfigs/dirt_quadrant_config.yaml')
def single_agent_eval(config_name, run):
cfg_path = Path(f'../marl_factory_grid/algorithms/marl/configs/{config_name}_config.yaml')
train_cfg = load_yaml_file(cfg_path)
# Use environment config with fixed spawnpoints for eval
eval_cfg = copy.deepcopy(train_cfg)
eval_cfg["env"]["env_name"] = "custom/MultiAgentConfigs/dirt_quadrant_eval_config"
eval_cfg["env"]["env_name"] = f"custom/{config_name}_eval_config"
agent = A2C(train_cfg, eval_cfg)
print("Evaluation phase")
agent.load_agents(["run0", "run1"])
agent.load_agents(run)
agent.eval_loop(10)
def multi_agent_eval(config_name, runs, emergent_phenomenon=False):
cfg_path = Path(f'../marl_factory_grid/algorithms/marl/configs/MultiAgentConfigs/{config_name}_config.yaml')
train_cfg = load_yaml_file(cfg_path)
# Use environment config with fixed spawnpoints for eval
eval_cfg = copy.deepcopy(train_cfg)
eval_cfg["env"]["env_name"] = f"custom/MultiAgentConfigs/{config_name}_eval_config"
# Sanity setting of required attributes and configs
if config_name == "two_rooms_one_door_modified":
if emergent_phenomenon:
eval_cfg["env"]["env_name"] = f"custom/MultiAgentConfigs/{config_name}_eval_config_emergent"
eval_cfg["algorithm"]["auxiliary_piles"] = False
else:
eval_cfg["algorithm"]["auxiliary_piles"] = True
elif config_name == "dirt_quadrant":
if emergent_phenomenon:
eval_cfg["algorithm"]["pile-order"] = "dynamic"
else:
eval_cfg["algorithm"]["pile-order"] = "smart"
agent = A2C(train_cfg, eval_cfg)
print("Evaluation phase")
agent.load_agents(runs)
agent.eval_loop(10)
def dirt_quadrant_single_agent_training():
single_agent_training("dirt_quadrant")
def two_rooms_one_door_modified_single_agent_training():
single_agent_training("two_rooms_one_door_modified")
def dirt_quadrant_single_agent_eval(agent_name):
if agent_name == "Sigmund":
run = "run0"
elif agent_name == "Wolfgang":
run = "run4"
single_agent_eval("dirt_quadrant", [run])
def two_rooms_one_door_modified_single_agent_eval(agent_name):
if agent_name == "Sigmund":
run = "run2"
elif agent_name == "Wolfgang":
run = "run3"
single_agent_eval("two_rooms_one_door_modified", [run])
def dirt_quadrant_multi_agent_eval(emergent_phenomenon):
multi_agent_eval("dirt_quadrant", ["run0", "run1"], emergent_phenomenon)
def two_rooms_one_door_modified_multi_agent_eval(emergent_phenomenon):
multi_agent_eval("two_rooms_one_door_modified", ["run2", "run3"], emergent_phenomenon)
if __name__ == '__main__':
dirt_quadrant_single_agent_training()