mirror of
https://github.com/illiumst/marl-factory-grid.git
synced 2025-07-04 00:21:36 +02:00
added individual eps-greedy for VDN
This commit is contained in:
@ -11,9 +11,9 @@ from algorithms.common import BaseLearner, BaseBuffer, soft_update, Experience
|
||||
|
||||
class QLearner(BaseLearner):
|
||||
def __init__(self, q_net, target_q_net, env, buffer_size=1e5, target_update=3000, eps_end=0.05, n_agents=1,
|
||||
gamma=0.99, train_every_n_steps=4, n_grad_steps=1, tau=1.0, max_grad_norm=10, weight_decay=1e-2,
|
||||
gamma=0.99, train_every=('step', 4), n_grad_steps=1, tau=1.0, max_grad_norm=10, weight_decay=1e-2,
|
||||
exploration_fraction=0.2, batch_size=64, lr=1e-4, reg_weight=0.0, eps_start=1):
|
||||
super(QLearner, self).__init__(env, n_agents, lr)
|
||||
super(QLearner, self).__init__(env, n_agents, train_every, n_grad_steps)
|
||||
self.q_net = q_net
|
||||
self.target_q_net = target_q_net
|
||||
self.target_q_net.eval()
|
||||
@ -26,11 +26,10 @@ class QLearner(BaseLearner):
|
||||
self.exploration_fraction = exploration_fraction
|
||||
self.batch_size = batch_size
|
||||
self.gamma = gamma
|
||||
self.train_every_n_steps = train_every_n_steps
|
||||
self.n_grad_steps = n_grad_steps
|
||||
self.tau = tau
|
||||
self.reg_weight = reg_weight
|
||||
self.weight_decay = weight_decay
|
||||
self.lr = lr
|
||||
self.optimizer = torch.optim.AdamW(self.q_net.parameters(),
|
||||
lr=self.lr,
|
||||
weight_decay=self.weight_decay)
|
||||
@ -64,36 +63,14 @@ class QLearner(BaseLearner):
|
||||
action = np.array([self.env.action_space.sample() for _ in range(self.n_agents)])
|
||||
return action
|
||||
|
||||
def learn(self, n_steps):
|
||||
step = 0
|
||||
while step < n_steps:
|
||||
obs, done = self.env.reset(), False
|
||||
total_reward = 0
|
||||
while not done:
|
||||
def on_new_experience(self, experience):
|
||||
self.buffer.add(experience)
|
||||
|
||||
action = self.get_action(obs)
|
||||
|
||||
next_obs, reward, done, info = self.env.step(action if not len(action) == 1 else action[0])
|
||||
|
||||
experience = Experience(observation=obs, next_observation=next_obs, action=action, reward=reward, done=done) # do we really need to copy?
|
||||
self.buffer.add(experience)
|
||||
# end of step routine
|
||||
obs = next_obs
|
||||
step += 1
|
||||
total_reward += reward
|
||||
self.anneal_eps(step, n_steps)
|
||||
|
||||
if step % self.train_every_n_steps == 0:
|
||||
self.train()
|
||||
self.n_updates += 1
|
||||
if step % self.target_update == 0:
|
||||
print('UPDATE')
|
||||
soft_update(self.q_net, self.target_q_net, tau=self.tau)
|
||||
|
||||
self.running_reward.append(total_reward)
|
||||
if step % 10 == 0:
|
||||
print(f'Step: {step} ({(step/n_steps)*100:.2f}%)\tRunning reward: {sum(list(self.running_reward))/len(self.running_reward):.2f}\t'
|
||||
f' eps: {self.eps:.4f}\tRunning loss: {sum(list(self.running_loss))/len(self.running_loss):.4f}\tUpdates:{self.n_updates}')
|
||||
def on_step_end(self, n_steps):
|
||||
self.anneal_eps(self.step, n_steps)
|
||||
if self.step % self.target_update == 0:
|
||||
print('UPDATE')
|
||||
soft_update(self.q_net, self.target_q_net, tau=self.tau)
|
||||
|
||||
def _training_routine(self, obs, next_obs, action):
|
||||
current_q_values = self.q_net(obs)
|
||||
@ -113,7 +90,7 @@ class QLearner(BaseLearner):
|
||||
def train(self):
|
||||
if len(self.buffer) < self.batch_size: return
|
||||
for _ in range(self.n_grad_steps):
|
||||
experience = self.buffer.sample(self.batch_size, cer=self.train_every_n_steps)
|
||||
experience = self.buffer.sample(self.batch_size, cer=self.train_every[-1])
|
||||
pred_q, target_q_raw = self._training_routine(experience.observation,
|
||||
experience.next_observation,
|
||||
experience.action)
|
||||
@ -127,8 +104,9 @@ if __name__ == '__main__':
|
||||
from environments.factory.simple_factory import SimpleFactory, DirtProperties, MovementProperties
|
||||
from algorithms.common import BaseDDQN
|
||||
from algorithms.vdn_learner import VDNLearner
|
||||
from algorithms.udr_learner import UDRLearner
|
||||
|
||||
N_AGENTS = 2
|
||||
N_AGENTS = 1
|
||||
|
||||
dirt_props = DirtProperties(clean_amount=3, gain_amount=0.2, max_global_amount=30,
|
||||
max_local_amount=5, spawn_frequency=1, max_spawn_ratio=0.05)
|
||||
@ -138,7 +116,7 @@ if __name__ == '__main__':
|
||||
env = SimpleFactory(dirt_properties=dirt_props, movement_properties=move_props, n_agents=N_AGENTS, pomdp_radius=2, max_steps=400, omit_agent_slice_in_obs=False, combin_agent_slices_in_obs=True)
|
||||
|
||||
dqn, target_dqn = BaseDDQN(), BaseDDQN()
|
||||
learner = VDNLearner(dqn, target_dqn, env, 40000, target_update=3500, lr=0.0007, gamma=0.99, n_agents=N_AGENTS, tau=0.95, max_grad_norm=10,
|
||||
train_every_n_steps=4, eps_end=0.025, n_grad_steps=1, reg_weight=0.1, exploration_fraction=0.25, batch_size=64)
|
||||
learner = QLearner(dqn, target_dqn, env, 40000, target_update=3500, lr=0.0007, gamma=0.99, n_agents=N_AGENTS, tau=0.95, max_grad_norm=10,
|
||||
train_every=('step', 4), eps_end=0.025, n_grad_steps=1, reg_weight=0.1, exploration_fraction=0.25, batch_size=64)
|
||||
#learner.save(Path(__file__).parent / 'test' / 'testexperiment1337')
|
||||
learner.learn(100000)
|
||||
|
Reference in New Issue
Block a user