mirror of
				https://github.com/illiumst/marl-factory-grid.git
				synced 2025-10-31 12:37:27 +01:00 
			
		
		
		
	added individual eps-greedy for VDN
This commit is contained in:
		| @@ -6,21 +6,6 @@ import torch | ||||
| import torch.nn as nn | ||||
|  | ||||
|  | ||||
| class BaseLearner: | ||||
|     def __init__(self, env, n_agents, lr): | ||||
|         self.env = env | ||||
|         self.n_agents = n_agents | ||||
|         self.lr = lr | ||||
|         self.device = 'cpu' | ||||
|  | ||||
|     def to(self, device): | ||||
|         self.device = device | ||||
|         for attr, value in self.__dict__.items(): | ||||
|             if isinstance(value, nn.Module): | ||||
|                 value = value.to(self.device) | ||||
|         return self | ||||
|  | ||||
|  | ||||
| class Experience(NamedTuple): | ||||
|     # can be use for a single (s_t, a, r s_{t+1}) tuple | ||||
|     # or for a batch of tuples | ||||
| @@ -29,6 +14,84 @@ class Experience(NamedTuple): | ||||
|     action:           np.ndarray | ||||
|     reward:           Union[float, np.ndarray] | ||||
|     done  :           Union[bool, np.ndarray] | ||||
|     episode:          int = -1 | ||||
|  | ||||
|  | ||||
| class BaseLearner: | ||||
|     def __init__(self, env, n_agents=1, train_every=('step', 4), n_grad_steps=1): | ||||
|         assert train_every[0] in ['step', 'episode'], 'train_every[0] must be one of ["step", "episode"]' | ||||
|         self.env = env | ||||
|         self.n_agents = n_agents | ||||
|         self.n_grad_steps = n_grad_steps | ||||
|         self.train_every = train_every | ||||
|         self.device = 'cpu' | ||||
|         self.n_updates = 0 | ||||
|         self.step = 0 | ||||
|         self.episode_step = 0 | ||||
|         self.episode = 0 | ||||
|         self.running_reward = deque(maxlen=5) | ||||
|  | ||||
|     def to(self, device): | ||||
|         self.device = device | ||||
|         for attr, value in self.__dict__.items(): | ||||
|             if isinstance(value, nn.Module): | ||||
|                 value = value.to(self.device) | ||||
|         return self | ||||
|  | ||||
|     def get_action(self, obs) -> Union[int, np.ndarray]: | ||||
|         pass | ||||
|  | ||||
|     def on_new_experience(self, experience): | ||||
|         pass | ||||
|  | ||||
|     def on_step_end(self, n_steps): | ||||
|         pass | ||||
|  | ||||
|     def on_episode_end(self, n_steps): | ||||
|         pass | ||||
|  | ||||
|     def train(self): | ||||
|         pass | ||||
|  | ||||
|     def learn(self, n_steps): | ||||
|         train_type, train_freq = self.train_every | ||||
|         while self.step < n_steps: | ||||
|             obs, done = self.env.reset(), False | ||||
|             total_reward = 0 | ||||
|             self.episode_step = 0 | ||||
|             while not done: | ||||
|  | ||||
|                 action = self.get_action(obs) | ||||
|  | ||||
|                 next_obs, reward, done, info = self.env.step(action if not len(action) == 1 else action[0]) | ||||
|  | ||||
|                 experience = Experience(observation=obs, next_observation=next_obs, | ||||
|                                         action=action, reward=reward, | ||||
|                                         done=done, episode=self.episode)  # do we really need to copy? | ||||
|                 self.on_new_experience(experience) | ||||
|                 # end of step routine | ||||
|                 obs = next_obs | ||||
|                 total_reward += reward | ||||
|                 self.step += 1 | ||||
|                 self.episode_step += 1 | ||||
|                 self.on_step_end(n_steps) | ||||
|                 if train_type == 'step' and (self.step % train_freq == 0): | ||||
|                     self.train() | ||||
|                     self.n_updates += 1 | ||||
|             self.on_episode_end(n_steps) | ||||
|             if train_type == 'episode' and (self.episode % train_freq == 0): | ||||
|                 self.train() | ||||
|                 self.n_updates += 1 | ||||
|  | ||||
|             self.running_reward.append(total_reward) | ||||
|             self.episode += 1 | ||||
|             try: | ||||
|                 if self.step % 10 == 0: | ||||
|                     print( | ||||
|                         f'Step: {self.step} ({(self.step / n_steps) * 100:.2f}%)\tRunning reward: {sum(list(self.running_reward)) / len(self.running_reward):.2f}\t' | ||||
|                         f' eps: {self.eps:.4f}\tRunning loss: {sum(list(self.running_loss)) / len(self.running_loss):.4f}\tUpdates:{self.n_updates}') | ||||
|             except Exception as e: | ||||
|                 pass | ||||
|  | ||||
|  | ||||
| class BaseBuffer: | ||||
| @@ -60,7 +123,7 @@ def soft_update(local_model, target_model, tau): | ||||
|  | ||||
|  | ||||
| def mlp_maker(dims, flatten=False, activation='elu', activation_last='identity'): | ||||
|     activations = {'elu': nn.ELU, 'relu': nn.ReLU, | ||||
|     activations = {'elu': nn.ELU, 'relu': nn.ReLU, 'sigmoid': nn.Sigmoid, | ||||
|                   'leaky_relu': nn.LeakyReLU, 'tanh': nn.Tanh, | ||||
|                   'gelu': nn.GELU, 'identity': nn.Identity} | ||||
|     layers = [('Flatten', nn.Flatten())] if flatten else [] | ||||
| @@ -71,7 +134,6 @@ def mlp_maker(dims, flatten=False, activation='elu', activation_last='identity') | ||||
|     return nn.Sequential(OrderedDict(layers)) | ||||
|  | ||||
|  | ||||
|  | ||||
| class BaseDQN(nn.Module): | ||||
|     def __init__(self, dims=[3*5*5, 64, 64, 9]): | ||||
|         super(BaseDQN, self).__init__() | ||||
|   | ||||
| @@ -11,9 +11,9 @@ from algorithms.common import BaseLearner, BaseBuffer, soft_update, Experience | ||||
|  | ||||
| class QLearner(BaseLearner): | ||||
|     def __init__(self, q_net, target_q_net, env, buffer_size=1e5, target_update=3000, eps_end=0.05, n_agents=1, | ||||
|                  gamma=0.99, train_every_n_steps=4, n_grad_steps=1, tau=1.0, max_grad_norm=10, weight_decay=1e-2, | ||||
|                  gamma=0.99, train_every=('step', 4), n_grad_steps=1, tau=1.0, max_grad_norm=10, weight_decay=1e-2, | ||||
|                  exploration_fraction=0.2, batch_size=64, lr=1e-4, reg_weight=0.0, eps_start=1): | ||||
|         super(QLearner, self).__init__(env, n_agents, lr) | ||||
|         super(QLearner, self).__init__(env, n_agents, train_every, n_grad_steps) | ||||
|         self.q_net = q_net | ||||
|         self.target_q_net = target_q_net | ||||
|         self.target_q_net.eval() | ||||
| @@ -26,11 +26,10 @@ class QLearner(BaseLearner): | ||||
|         self.exploration_fraction = exploration_fraction | ||||
|         self.batch_size = batch_size | ||||
|         self.gamma = gamma | ||||
|         self.train_every_n_steps = train_every_n_steps | ||||
|         self.n_grad_steps = n_grad_steps | ||||
|         self.tau = tau | ||||
|         self.reg_weight = reg_weight | ||||
|         self.weight_decay = weight_decay | ||||
|         self.lr = lr | ||||
|         self.optimizer = torch.optim.AdamW(self.q_net.parameters(), | ||||
|                                            lr=self.lr, | ||||
|                                            weight_decay=self.weight_decay) | ||||
| @@ -64,36 +63,14 @@ class QLearner(BaseLearner): | ||||
|             action = np.array([self.env.action_space.sample() for _ in range(self.n_agents)]) | ||||
|         return action | ||||
|  | ||||
|     def learn(self, n_steps): | ||||
|         step = 0 | ||||
|         while step < n_steps: | ||||
|             obs, done = self.env.reset(), False | ||||
|             total_reward = 0 | ||||
|             while not done: | ||||
|     def on_new_experience(self, experience): | ||||
|         self.buffer.add(experience) | ||||
|  | ||||
|                 action = self.get_action(obs) | ||||
|  | ||||
|                 next_obs, reward, done, info = self.env.step(action if not len(action) == 1 else action[0]) | ||||
|  | ||||
|                 experience = Experience(observation=obs, next_observation=next_obs, action=action, reward=reward, done=done)  # do we really need to copy? | ||||
|                 self.buffer.add(experience) | ||||
|                 # end of step routine | ||||
|                 obs = next_obs | ||||
|                 step += 1 | ||||
|                 total_reward += reward | ||||
|                 self.anneal_eps(step, n_steps) | ||||
|  | ||||
|                 if step % self.train_every_n_steps == 0: | ||||
|                     self.train() | ||||
|                     self.n_updates += 1 | ||||
|                 if step % self.target_update == 0: | ||||
|                     print('UPDATE') | ||||
|                     soft_update(self.q_net, self.target_q_net, tau=self.tau) | ||||
|  | ||||
|             self.running_reward.append(total_reward) | ||||
|             if step % 10 == 0: | ||||
|                 print(f'Step: {step} ({(step/n_steps)*100:.2f}%)\tRunning reward: {sum(list(self.running_reward))/len(self.running_reward):.2f}\t' | ||||
|                       f' eps: {self.eps:.4f}\tRunning loss: {sum(list(self.running_loss))/len(self.running_loss):.4f}\tUpdates:{self.n_updates}') | ||||
|     def on_step_end(self, n_steps): | ||||
|         self.anneal_eps(self.step, n_steps) | ||||
|         if self.step % self.target_update == 0: | ||||
|             print('UPDATE') | ||||
|             soft_update(self.q_net, self.target_q_net, tau=self.tau) | ||||
|  | ||||
|     def _training_routine(self, obs, next_obs, action): | ||||
|         current_q_values = self.q_net(obs) | ||||
| @@ -113,7 +90,7 @@ class QLearner(BaseLearner): | ||||
|     def train(self): | ||||
|         if len(self.buffer) < self.batch_size: return | ||||
|         for _ in range(self.n_grad_steps): | ||||
|             experience = self.buffer.sample(self.batch_size, cer=self.train_every_n_steps) | ||||
|             experience = self.buffer.sample(self.batch_size, cer=self.train_every[-1]) | ||||
|             pred_q, target_q_raw = self._training_routine(experience.observation, | ||||
|                                                           experience.next_observation, | ||||
|                                                           experience.action) | ||||
| @@ -127,8 +104,9 @@ if __name__ == '__main__': | ||||
|     from environments.factory.simple_factory import SimpleFactory, DirtProperties, MovementProperties | ||||
|     from algorithms.common import BaseDDQN | ||||
|     from algorithms.vdn_learner import VDNLearner | ||||
|     from algorithms.udr_learner import UDRLearner | ||||
|  | ||||
|     N_AGENTS = 2 | ||||
|     N_AGENTS = 1 | ||||
|  | ||||
|     dirt_props = DirtProperties(clean_amount=3, gain_amount=0.2, max_global_amount=30, | ||||
|                                 max_local_amount=5, spawn_frequency=1, max_spawn_ratio=0.05) | ||||
| @@ -138,7 +116,7 @@ if __name__ == '__main__': | ||||
|     env = SimpleFactory(dirt_properties=dirt_props, movement_properties=move_props, n_agents=N_AGENTS, pomdp_radius=2,  max_steps=400, omit_agent_slice_in_obs=False, combin_agent_slices_in_obs=True) | ||||
|  | ||||
|     dqn, target_dqn = BaseDDQN(), BaseDDQN() | ||||
|     learner = VDNLearner(dqn, target_dqn, env, 40000, target_update=3500, lr=0.0007, gamma=0.99, n_agents=N_AGENTS, tau=0.95, max_grad_norm=10, | ||||
|                        train_every_n_steps=4, eps_end=0.025, n_grad_steps=1, reg_weight=0.1, exploration_fraction=0.25, batch_size=64) | ||||
|     learner = QLearner(dqn, target_dqn, env, 40000, target_update=3500, lr=0.0007, gamma=0.99, n_agents=N_AGENTS, tau=0.95, max_grad_norm=10, | ||||
|                        train_every=('step', 4), eps_end=0.025, n_grad_steps=1, reg_weight=0.1, exploration_fraction=0.25, batch_size=64) | ||||
|     #learner.save(Path(__file__).parent / 'test' / 'testexperiment1337') | ||||
|     learner.learn(100000) | ||||
|   | ||||
							
								
								
									
										178
									
								
								algorithms/udr_learner.py
									
									
									
									
									
										Normal file
									
								
							
							
						
						
									
										178
									
								
								algorithms/udr_learner.py
									
									
									
									
									
										Normal file
									
								
							| @@ -0,0 +1,178 @@ | ||||
| import random | ||||
| from typing import Union, List | ||||
| from collections import deque | ||||
| import numpy as np | ||||
| import torch | ||||
| import torch.nn as nn | ||||
| from algorithms.common import BaseBuffer, Experience, BaseLearner, BaseDQN, mlp_maker | ||||
| from collections import defaultdict | ||||
|  | ||||
|  | ||||
| class UDRLBuffer(BaseBuffer): | ||||
|     def __init__(self, size): | ||||
|         super(UDRLBuffer, self).__init__(0) | ||||
|         self.experience = defaultdict(list) | ||||
|         self.size = size | ||||
|  | ||||
|     def add(self, experience): | ||||
|         self.experience[experience.episode].append(experience) | ||||
|         if len(self.experience) > self.size: | ||||
|             self.sort_and_prune() | ||||
|  | ||||
|     def select_time_steps(self, episode: List[Experience]): | ||||
|         T = len(episode)  # max horizon | ||||
|         t1 = random.randint(0, T - 1) | ||||
|         t2 = random.randint(t1 + 1, T) | ||||
|         return t1, t2, T | ||||
|  | ||||
|     def sort_and_prune(self): | ||||
|         scores = [] | ||||
|         for k, episode_experience in self.experience.items(): | ||||
|             r = sum([e.reward for e in episode_experience]) | ||||
|             scores.append((r, k)) | ||||
|         sorted_scores = sorted(scores, reverse=True) | ||||
|         return sorted_scores | ||||
|  | ||||
|     def sample(self, batch_size, cer=0): | ||||
|         random_episode_keys = random.choices(list(self.experience.keys()), k=batch_size) | ||||
|         lsts = (obs, desired_rewards, horizons, actions) = [], [], [], [] | ||||
|         for ek in random_episode_keys: | ||||
|             episode = self.experience[ek] | ||||
|             t1, t2, T = self.select_time_steps(episode) | ||||
|             t2 = T  # TODO only good for episodic envs | ||||
|             observation = episode[t1].observation | ||||
|             desired_reward = sum([experience.reward for experience in episode[t1:t2]]) | ||||
|             horizon = t2 - t1 | ||||
|             action = episode[t1].action | ||||
|             for lst, val in zip(lsts, [observation, desired_reward, horizon, action]): | ||||
|                 lst.append(val) | ||||
|         return (torch.stack([torch.from_numpy(o) for o in obs], 0).float(), | ||||
|                 torch.tensor(desired_rewards).view(-1, 1).float(), | ||||
|                 torch.tensor(horizons).view(-1, 1).float(), | ||||
|                 torch.tensor(actions)) | ||||
|  | ||||
|  | ||||
| class UDRLearner(BaseLearner): | ||||
|     # Upside Down Reinforcement Learner | ||||
|     def __init__(self, env, desired_reward, desired_horizon, | ||||
|                  behavior_fn=None, buffer_size=100, n_warm_up_episodes=8, best_x=20, | ||||
|                  batch_size=128, lr=1e-3, n_agents=1, train_every=('episode', 4), n_grad_steps=1): | ||||
|         super(UDRLearner, self).__init__(env, n_agents, train_every, n_grad_steps) | ||||
|         assert self.n_agents == 1, 'UDRL currently only supports single agent training' | ||||
|         self.behavior_fn = behavior_fn | ||||
|         self.buffer_size = buffer_size | ||||
|         self.n_warm_up_episodes = n_warm_up_episodes | ||||
|         self.buffer = UDRLBuffer(buffer_size) | ||||
|         self.batch_size = batch_size | ||||
|         self.mode = 'train' | ||||
|         self.best_x = best_x | ||||
|         self.desired_reward = desired_reward | ||||
|         self.desired_horizon = desired_horizon | ||||
|         self.lr = lr | ||||
|         self.optimizer = torch.optim.AdamW(self.behavior_fn.parameters(), lr=lr) | ||||
|  | ||||
|         self.running_loss = deque(maxlen=self.n_grad_steps*5) | ||||
|  | ||||
|     def sample_exploratory_commands(self): | ||||
|         top_x = self.buffer.sort_and_prune()[:self.best_x] | ||||
|         # The exploratory desired horizon dh0 is set to the mean of the lengths of the selected episodes | ||||
|         new_desired_horizon = np.mean([len(self.buffer.experience[k]) for _, k in top_x]) | ||||
|         # save all top_X cumulative returns in a list | ||||
|         returns = [r for r, _ in top_x] | ||||
|         # from these returns calc the mean and std | ||||
|         mean_returns = np.mean([r for r, _ in top_x]) | ||||
|         std_returns = np.std(returns) | ||||
|         # sample desired reward from a uniform distribution given the mean and the std | ||||
|         new_desired_reward = np.random.uniform(mean_returns, mean_returns + std_returns) | ||||
|         self.exploratory_commands = (new_desired_reward, new_desired_horizon) | ||||
|         return torch.tensor([[new_desired_reward]]).float(), torch.tensor([[new_desired_horizon]]).float() | ||||
|  | ||||
|     def on_new_experience(self, experience): | ||||
|         self.buffer.add(experience) | ||||
|         self.desired_reward = self.desired_reward - torch.tensor(experience.reward).float().view(1, 1) | ||||
|  | ||||
|     def on_step_end(self, n_steps): | ||||
|         one = torch.tensor([1.]).float().view(1, 1) | ||||
|         self.desired_horizon -= one | ||||
|         self.desired_horizon = self.desired_horizon if self.desired_horizon >= 1. else one | ||||
|  | ||||
|     def on_episode_end(self, n_steps): | ||||
|         self.desired_reward, self.desired_horizon = self.sample_exploratory_commands() | ||||
|  | ||||
|     def get_action(self, obs) -> Union[int, np.ndarray]: | ||||
|         o = torch.from_numpy(obs).unsqueeze(0) if self.n_agents <= 1 else torch.from_numpy(obs) | ||||
|         bf_out = self.behavior_fn(o.float(), self.desired_reward, self.desired_horizon) | ||||
|         dist = torch.distributions.Categorical(bf_out) | ||||
|         sample = dist.sample() | ||||
|         return [sample.item()]#[self.env.action_space.sample()] | ||||
|  | ||||
|     def _backprop_loss(self, loss): | ||||
|         # log loss | ||||
|         self.running_loss.append(loss.item()) | ||||
|         # Optimize the model | ||||
|         self.optimizer.zero_grad() | ||||
|         loss.backward() | ||||
|         #torch.nn.utils.clip_grad_norm_(self.behavior_fn.parameters(), 10) | ||||
|         self.optimizer.step() | ||||
|  | ||||
|     def train(self): | ||||
|         if len(self.buffer) < self.n_warm_up_episodes: return | ||||
|         for _ in range(self.n_grad_steps): | ||||
|             experience = self.buffer.sample(self.batch_size) | ||||
|             bf_out = self.behavior_fn(*experience[:3]) | ||||
|             labels = experience[-1] | ||||
|             #print(labels.shape) | ||||
|             loss = nn.CrossEntropyLoss()(bf_out, labels.squeeze()) | ||||
|             mean_entropy = torch.distributions.Categorical(bf_out).entropy().mean() | ||||
|             self._backprop_loss(loss - 0.03*mean_entropy) | ||||
|         print(f'Running loss: {np.mean(list(self.running_loss)):.3f}\tRunning reward: {np.mean(self.running_reward):.2f}' | ||||
|               f'\td_r: {self.desired_reward.item():.2f}\ttd_h: {self.desired_horizon.item()}') | ||||
|  | ||||
|  | ||||
| class BF(BaseDQN): | ||||
|     def __init__(self, dims=[5*5*3, 64]): | ||||
|         super(BF, self).__init__(dims) | ||||
|         self.net = mlp_maker(dims, activation_last='identity') | ||||
|         self.command_net = mlp_maker([2, 64], activation_last='sigmoid') | ||||
|         self.common_branch = mlp_maker([64, 64, 64, 9]) | ||||
|  | ||||
|  | ||||
|     def forward(self, observation, desired_reward, horizon): | ||||
|         command = torch.cat((desired_reward*(0.02), horizon*(0.01)), dim=-1) | ||||
|         obs_out = self.net(torch.flatten(observation, start_dim=1)) | ||||
|         command_out = self.command_net(command) | ||||
|         combined = obs_out*command_out | ||||
|         out = self.common_branch(combined) | ||||
|         return torch.softmax(out, -1) | ||||
|  | ||||
|  | ||||
| if __name__ == '__main__': | ||||
|     from environments.factory.simple_factory import SimpleFactory, DirtProperties, MovementProperties | ||||
|     from algorithms.common import BaseDDQN | ||||
|     from algorithms.vdn_learner import VDNLearner | ||||
|  | ||||
|     N_AGENTS = 1 | ||||
|  | ||||
|     dirt_props = DirtProperties(clean_amount=3, gain_amount=0.2, max_global_amount=30, | ||||
|                                 max_local_amount=5, spawn_frequency=1, max_spawn_ratio=0.05) | ||||
|     move_props = MovementProperties(allow_diagonal_movement=True, | ||||
|                                     allow_square_movement=True, | ||||
|                                     allow_no_op=False) | ||||
|     env = SimpleFactory(dirt_properties=dirt_props, movement_properties=move_props, n_agents=N_AGENTS, pomdp_radius=2, | ||||
|                         max_steps=400, omit_agent_slice_in_obs=False, combin_agent_slices_in_obs=True) | ||||
|  | ||||
|     bf = BF() | ||||
|     desired_reward = torch.tensor([200.]).view(1, 1).float() | ||||
|     desired_horizon = torch.tensor([400.]).view(1, 1).float() | ||||
|     learner = UDRLearner(env, behavior_fn=bf, | ||||
|                          train_every=('episode', 2), | ||||
|                          buffer_size=40, | ||||
|                          best_x=10, | ||||
|                          lr=1e-3, | ||||
|                          batch_size=64, | ||||
|                          n_warm_up_episodes=12, | ||||
|                          n_grad_steps=4, | ||||
|                          desired_reward=desired_reward, | ||||
|                          desired_horizon=desired_horizon) | ||||
|     #learner.save(Path(__file__).parent / 'test' / 'testexperiment1337') | ||||
|     learner.learn(500000) | ||||
		Reference in New Issue
	
	Block a user
	 romue
					romue