mirror of
https://github.com/illiumst/marl-factory-grid.git
synced 2025-05-23 07:16:44 +02:00
refactored main plus small changes
This commit is contained in:
parent
827c2b9ac2
commit
8768d9b75f
@ -15,8 +15,8 @@ class Entity:
|
|||||||
|
|
||||||
|
|
||||||
class Renderer:
|
class Renderer:
|
||||||
BG_COLOR = (178, 190, 195)#(99, 110, 114)
|
BG_COLOR = (178, 190, 195) # (99, 110, 114)
|
||||||
WHITE = (223, 230, 233)#(200, 200, 200)
|
WHITE = (223, 230, 233) # (200, 200, 200)
|
||||||
AGENT_VIEW_COLOR = (9, 132, 227)
|
AGENT_VIEW_COLOR = (9, 132, 227)
|
||||||
|
|
||||||
def __init__(self, grid_w=16, grid_h=16, cell_size=40, fps=4, grid_lines=True, view_radius=2):
|
def __init__(self, grid_w=16, grid_h=16, cell_size=40, fps=4, grid_lines=True, view_radius=2):
|
||||||
|
@ -17,10 +17,12 @@ DIRT_INDEX = -1
|
|||||||
|
|
||||||
@dataclass
|
@dataclass
|
||||||
class DirtProperties:
|
class DirtProperties:
|
||||||
clean_amount = 10
|
clean_amount = 2 # How much does the robot clean with one action.
|
||||||
max_spawn_ratio = 0.1
|
max_spawn_ratio = 0.2 # On max how much tiles does the dirt spawn in percent.
|
||||||
gain_amount = 0.1
|
gain_amount = 0.5 # How much dirt does spawn per tile
|
||||||
spawn_frequency = 5
|
spawn_frequency = 5 # Spawn Frequency in Steps
|
||||||
|
max_local_amount = 1 # Max dirt amount per tile.
|
||||||
|
max_global_amount = 20 # Max dirt amount in the whole environment.
|
||||||
|
|
||||||
|
|
||||||
class SimpleFactory(BaseFactory):
|
class SimpleFactory(BaseFactory):
|
||||||
@ -64,13 +66,15 @@ class SimpleFactory(BaseFactory):
|
|||||||
self.renderer.render(OrderedDict(dirt=dirt, wall=walls, **agents))
|
self.renderer.render(OrderedDict(dirt=dirt, wall=walls, **agents))
|
||||||
|
|
||||||
def spawn_dirt(self) -> None:
|
def spawn_dirt(self) -> None:
|
||||||
if not self.state[DIRT_INDEX].sum() > self.max_dirt or not np.argwhere(self.state[DIRT_INDEX] != h.IS_FREE_CELL).shape[0] > 10:
|
if not np.argwhere(self.state[DIRT_INDEX] != h.IS_FREE_CELL).shape[0] > self._dirt_properties.max_global_amount:
|
||||||
free_for_dirt = self.free_cells(excluded_slices=DIRT_INDEX)
|
free_for_dirt = self.free_cells(excluded_slices=DIRT_INDEX)
|
||||||
|
|
||||||
# randomly distribute dirt across the grid
|
# randomly distribute dirt across the grid
|
||||||
n_dirt_tiles = int(random.uniform(0, self._dirt_properties.max_spawn_ratio) * len(free_for_dirt))
|
n_dirt_tiles = int(random.uniform(0, self._dirt_properties.max_spawn_ratio) * len(free_for_dirt))
|
||||||
for x, y in free_for_dirt[:n_dirt_tiles]:
|
for x, y in free_for_dirt[:n_dirt_tiles]:
|
||||||
self.state[DIRT_INDEX, x, y] += self._dirt_properties.gain_amount
|
new_value = self.state[DIRT_INDEX, x, y] + self._dirt_properties.gain_amount
|
||||||
|
self.state[DIRT_INDEX, x, y] = max(new_value, self._dirt_properties.max_local_amount)
|
||||||
|
|
||||||
else:
|
else:
|
||||||
pass
|
pass
|
||||||
|
|
||||||
@ -130,19 +134,20 @@ class SimpleFactory(BaseFactory):
|
|||||||
f'{[self.slice_strings[entity] for entity in cols if entity != self.string_slices["dirt"]]}')
|
f'{[self.slice_strings[entity] for entity in cols if entity != self.string_slices["dirt"]]}')
|
||||||
if self._is_clean_up_action(agent_state.action):
|
if self._is_clean_up_action(agent_state.action):
|
||||||
if agent_state.action_valid:
|
if agent_state.action_valid:
|
||||||
reward += 0.9
|
reward += 1
|
||||||
self.print(f'Agent {agent_state.i} did just clean up some dirt at {agent_state.pos}.')
|
self.print(f'Agent {agent_state.i} did just clean up some dirt at {agent_state.pos}.')
|
||||||
self.monitor.set('dirt_cleaned', 1)
|
self.monitor.set('dirt_cleaned', 1)
|
||||||
else:
|
else:
|
||||||
|
reward -= 1
|
||||||
self.print(f'Agent {agent_state.i} just tried to clean up some dirt '
|
self.print(f'Agent {agent_state.i} just tried to clean up some dirt '
|
||||||
f'at {agent_state.pos}, but was unsucsessfull.')
|
f'at {agent_state.pos}, but was unsucsessfull.')
|
||||||
self.monitor.set('failed_cleanup_attempt', 1)
|
self.monitor.set('failed_cleanup_attempt', 1)
|
||||||
reward -= 0.01
|
|
||||||
elif self._is_moving_action(agent_state.action):
|
elif self._is_moving_action(agent_state.action):
|
||||||
if agent_state.action_valid:
|
if agent_state.action_valid:
|
||||||
reward -= 0.2
|
reward -= 0.01
|
||||||
else:
|
else:
|
||||||
reward -= 0.1
|
reward -= 0.5
|
||||||
|
|
||||||
for entity in cols:
|
for entity in cols:
|
||||||
if entity != self.string_slices["dirt"]:
|
if entity != self.string_slices["dirt"]:
|
||||||
|
@ -64,6 +64,9 @@ def check_agent_move(state, dim, action):
|
|||||||
or y_new >= agent_slice.shape[0]
|
or y_new >= agent_slice.shape[0]
|
||||||
)
|
)
|
||||||
|
|
||||||
|
# Check for collision with level walls
|
||||||
|
valid = valid and not state[LEVEL_IDX][x_new, y_new]
|
||||||
|
|
||||||
return (x, y), (x_new, y_new), valid
|
return (x, y), (x_new, y_new), valid
|
||||||
|
|
||||||
|
|
||||||
|
@ -3,6 +3,23 @@ import seaborn as sns
|
|||||||
from matplotlib import pyplot as plt
|
from matplotlib import pyplot as plt
|
||||||
|
|
||||||
|
|
||||||
|
PALETTE = 10 * (
|
||||||
|
"#377eb8",
|
||||||
|
"#4daf4a",
|
||||||
|
"#984ea3",
|
||||||
|
"#e41a1c",
|
||||||
|
"#ff7f00",
|
||||||
|
"#a65628",
|
||||||
|
"#f781bf",
|
||||||
|
"#888888",
|
||||||
|
"#a6cee3",
|
||||||
|
"#b2df8a",
|
||||||
|
"#cab2d6",
|
||||||
|
"#fb9a99",
|
||||||
|
"#fdbf6f",
|
||||||
|
)
|
||||||
|
|
||||||
|
|
||||||
def plot(filepath, ext='png', tag='monitor', **kwargs):
|
def plot(filepath, ext='png', tag='monitor', **kwargs):
|
||||||
plt.rcParams.update(kwargs)
|
plt.rcParams.update(kwargs)
|
||||||
|
|
||||||
@ -18,7 +35,7 @@ def prepare_plot(filepath, results_df, ext='png', tag=''):
|
|||||||
_ = sns.lineplot(data=results_df, ci='sd', x='step')
|
_ = sns.lineplot(data=results_df, ci='sd', x='step')
|
||||||
|
|
||||||
# %%
|
# %%
|
||||||
sns.set_theme(palette='husl', style='whitegrid')
|
sns.set_theme(palette=PALETTE, style='whitegrid')
|
||||||
font_size = 16
|
font_size = 16
|
||||||
tex_fonts = {
|
tex_fonts = {
|
||||||
# Use LaTeX to write all text
|
# Use LaTeX to write all text
|
||||||
|
103
main.py
Normal file
103
main.py
Normal file
@ -0,0 +1,103 @@
|
|||||||
|
import pickle
|
||||||
|
import warnings
|
||||||
|
from typing import Union
|
||||||
|
from os import PathLike
|
||||||
|
from pathlib import Path
|
||||||
|
import time
|
||||||
|
import pandas as pd
|
||||||
|
|
||||||
|
from stable_baselines3.common.callbacks import CallbackList
|
||||||
|
|
||||||
|
from environments.factory.simple_factory import DirtProperties, SimpleFactory
|
||||||
|
from environments.logging.monitor import MonitorCallback
|
||||||
|
from environments.logging.plotting import prepare_plot
|
||||||
|
from environments.logging.training import TraningMonitor
|
||||||
|
|
||||||
|
warnings.filterwarnings('ignore', category=FutureWarning)
|
||||||
|
warnings.filterwarnings('ignore', category=UserWarning)
|
||||||
|
|
||||||
|
|
||||||
|
def combine_runs(run_path: Union[str, PathLike]):
|
||||||
|
run_path = Path(run_path)
|
||||||
|
df_list = list()
|
||||||
|
for run, monitor_file in enumerate(run_path.rglob('monitor_*.pick')):
|
||||||
|
with monitor_file.open('rb') as f:
|
||||||
|
monitor_list = pickle.load(f)
|
||||||
|
|
||||||
|
for m_idx in range(len(monitor_list)):
|
||||||
|
monitor_list[m_idx]['episode'] = str(m_idx)
|
||||||
|
monitor_list[m_idx]['run'] = str(run)
|
||||||
|
|
||||||
|
df = pd.concat(monitor_list, ignore_index=True)
|
||||||
|
df['train_step'] = range(df.shape[0])
|
||||||
|
|
||||||
|
df = df.fillna(0)
|
||||||
|
|
||||||
|
#for column in list(df.columns):
|
||||||
|
# if column not in ['episode', 'run', 'step', 'train_step']:
|
||||||
|
# if 'clean' in column or '_vs_' in column:
|
||||||
|
# df[f'{column}_sum_roll'] = df[column].rolling(window=50, min_periods=1).sum()
|
||||||
|
# else:
|
||||||
|
# df[f'{column}_mean_roll'] = df[column].rolling(window=50, min_periods=1).mean()
|
||||||
|
|
||||||
|
df_list.append(df)
|
||||||
|
df = pd.concat(df_list, ignore_index=True)
|
||||||
|
df = df.fillna(0)
|
||||||
|
|
||||||
|
df_group = df.groupby(['episode', 'run']).aggregate({col: 'mean' if col in ['dirt_amount',
|
||||||
|
'dirty_tiles'] else 'sum'
|
||||||
|
for col in df.columns if col not in ['episode', 'run']
|
||||||
|
}).reset_index()
|
||||||
|
|
||||||
|
import seaborn as sns
|
||||||
|
from matplotlib import pyplot as plt
|
||||||
|
df_melted = df_group.melt(id_vars=['train_step', 'run'],
|
||||||
|
value_vars=['agent_0_vs_level', 'dirt_amount',
|
||||||
|
'dirty_tiles', 'step_reward',
|
||||||
|
'failed_cleanup_attempt',
|
||||||
|
'dirt_cleaned'], var_name="Variable",
|
||||||
|
value_name="Score")
|
||||||
|
|
||||||
|
sns.lineplot(data=df_melted, x='train_step', y='Score', hue='Variable', ci='sd')
|
||||||
|
plt.show()
|
||||||
|
|
||||||
|
prepare_plot(filepath=run_path / f'{run_path.name}_monitor_out_combined',
|
||||||
|
results_df=df.filter(regex=(".+_roll|(step)$")), tag='monitor')
|
||||||
|
print('Plotting done.')
|
||||||
|
|
||||||
|
|
||||||
|
if __name__ == '__main__':
|
||||||
|
|
||||||
|
# combine_runs('debug_out/PPO_1622113195')
|
||||||
|
# exit()
|
||||||
|
|
||||||
|
from stable_baselines3 import DQN, PPO
|
||||||
|
|
||||||
|
dirt_props = DirtProperties()
|
||||||
|
time_stamp = int(time.time())
|
||||||
|
|
||||||
|
out_path = None
|
||||||
|
|
||||||
|
for seed in range(5):
|
||||||
|
|
||||||
|
env = SimpleFactory(n_agents=1, dirt_properties=dirt_props)
|
||||||
|
model = PPO("MlpPolicy", env, verbose=1, ent_coef=0.0, seed=seed)
|
||||||
|
|
||||||
|
out_path = Path('../debug_out') / f'{model.__class__.__name__}_{time_stamp}'
|
||||||
|
|
||||||
|
identifier = f'{seed}_{model.__class__.__name__}_{time_stamp}'
|
||||||
|
out_path /= identifier
|
||||||
|
|
||||||
|
callbacks = CallbackList(
|
||||||
|
[TraningMonitor(out_path / f'train_logging_{identifier}.csv'),
|
||||||
|
MonitorCallback(env, filepath=out_path / f'monitor_{identifier}.pick', plotting=False)]
|
||||||
|
)
|
||||||
|
|
||||||
|
model.learn(total_timesteps=int(5e5), callback=callbacks)
|
||||||
|
|
||||||
|
save_path = out_path / f'model_{identifier}.zip'
|
||||||
|
save_path.parent.mkdir(parents=True, exist_ok=True)
|
||||||
|
model.save(save_path)
|
||||||
|
|
||||||
|
if out_path:
|
||||||
|
combine_runs(out_path)
|
Loading…
x
Reference in New Issue
Block a user